Technologie Hero Istock-1466947829 Wirestock

Projects

Technology development based on a combination of laser shock peening (LSP) and non-destructive testing (NDT) to increase the service life and reduce the weight of welded double-helix heat exchangers / LSP-Detect

The aim of the LSP-Detect cooperation project funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) is to develop a concept for combining laser shock peening (LSP) and non-destructive testing (NDT), which is to be applied in a manufacturing process for the production of double-helix heat exchangers. The LSP technique offers the possibility to treat and strengthen the welds in order to increase life and load-bearing capacity of the welded component under service conditions. NDT sensor technology is used to detect possible defects in welds in the form of cracks and pores and effectively minimize their accelerating effect on crack initiation and growth through LSP-induced compressive residual stresses. Such defects can occur during fabrication or during operation of double-helix heat exchangers under service conditions.
Duration: 1.4.2023 – 31.3.2025

Partners: Albert Hodel GmbH (Koordinator), Helmholtz-Zentrum hereon GmbH (Kooperationspartner)

Contact

Dr. habil. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Material and Process Design

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Str. 1
21502 Geesthacht

Aluminium Atomization for Additive Manufacturing

The aim of the project 3AM is the development of the process chain consisting of metal powder atomization and subsequent powder processing in selective laser melting (SLM) as well as laser metal deposition (LMD). The processability of AlMg and AlSi alloys will be investigated. Emphasis is given to the production of the powder as well as powder processing in additive manufacturing processes SLM and LMD. Additive manufacturing processes with their outstanding material utilization can be explored if suitable materials exist and the materials can be produced cost-efficiently. The current development time of suitable and optimized aluminium alloys for the additive manufacturing must be reduced to establish aluminium as one of the important lightweight material. The project 3AM will be supported by the German Investitions-und Förderbank Hamburg (IFB). During the project application phase, one of the tasks is to demonstrate that, the process chain to be developed has better CO2-performance. The focus of the department Laser Processing and Structural Assessment (WMF) is in microstructural and mechanical characterisation of powder materials as well as additively generated structures.

Duration: 01.05.2020 – 30.06.2022

Partners: Fehrmann Alloys GmbH & Co.KG (Koordinator), Fraunhofer Einrichtung für Additive Produktionstechnologien, Helmholtz-Zentrum Hereon

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Development and demonstration of an autonomous forming and straightening process using Laser-Peen-Forming

The aim of the project PEENCOR is the development of laser peen forming (LPF) process, which will enable to correct unavoidable distortions of curved titanium parts in aircraft. The process has to be able to measure the complex distortions that occurred in previous manufacturing steps and then to correct them automatically using LPF, to reduce the scrap in production and therefore to ensure competitive advantage. The industrial application of LPF requires that the process runs autonomously, so the residual stress profiles do not need to be analysed and calculated again for each component. Helmholtz-Zentrum Hereon is responsible as a consortium partner for the sub-project “The development of optimal process parameters and identification of an artificial intelligence algorithm for autonomous forming and straightening with laser peen forming”. The project PEENCOR is funded by the German BMWi (German Federal Ministry for Economic Affairs and Energy) within the frame of the LuFo VI-1 Programme (Aviation Research Programme).

Duration: : 01.05.2020 – 30.04.2023

Partners: ZAL Zentrum für Angewandte Luftfahrtforschung GmbH (Koordinator), FormTech GmbH, Helmholtz-Zentrum Hereon, Leuphana Universität Lüneburg

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Forming of micro-perforated outer skin of HLFC wings assisted by FEM simulation

One of the main challenges on Hybrid Laminar Flow Control (HLFC) wing design is to integrate the HLFC systems (vacuum chambers, pipe, etc.) inside the small space of the leading edge, together with de-icing and high lift systems. Clean Sky 2 aims to reduce HLFC complexity by using variable pitch micro-perforations along the outer skin in order to control suctions without necessity of internal chambering. Variable micro-perforation entails a new
challenge that must be investigated before deciding on the most suitable skin forming technology and material for new generation of HLFC demo structures, which will contribute to reduce both fuel consumption and pollutant emissions in future aircrafts by 10%.
To achieve this goal, the MICROFORM project will develop i) a suitable forming process for the real-scale manufacturing of leading edge HLFC wing outer skins and ii) supporting simulation tools to minimize initial process development costs of large structures composed by both constant and variable micro-perforation patterns meeting requested quality criteria and dimensional tolerances.
The implementation of MICROFORM is carried out by a multidisciplinary consortium, formed by research and industrial entities who are experts in the development of relevant simulation tools (LORTEK, Hereon) and forming technologies (SOFITEC, FORMTECH).
Hereon leads the work package entitled “Development of a precise finite element models (FEM) simulation tool for stretch forming of variable microdrilled Titanium CP40”. The project is co-funded by the Clean Sky 2 Joint Technology Initiative (CS2 JTI) which is a Public-Private Partnership between the European Commission and industry.

Duration: 1.5.2020 – 31.12.2022

Partners: Lortek S Coop (Koordinator), FormTech GmbH, Sofitec Aero SL, Helmholtz-Zentrum Hereon

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

more information

Aluminium-Legierungen für die laseradditive Fertigung

Im ZIM-Kooperationsprojekt ALaF werden neue High-Tech-Aluminiumlegierungen für die pulver-basierten laseradditiven Verfahren entwickelt. Die zu entwickelnden High-Tech-Aluminiumlegierungen sollen gute Verarbeitbarkeit mit pulver-basierten laseradditiven Verfahren, eine hohe spezifische Festigkeit sowie gute Korrosionsbeständigkeit aufweisen. Hierbei sollen sich die neuentwickelten Legierungen insbesondere durch eine höhere Festigkeit und Bruchdehnung gegenüber den derzeit verwendeten Standard-AlSi-Legierungen unterscheiden. Zu diesem Zweck soll bei der Legierungszusammensetzung auf kostenintensive Legierungselemente wie Scandium verzichtet werden. Das Pulver wird durch einen geeigneten Pulververdüsungsprozess hergestellt. Durch die anschließende Charakterisierung der Pulvereigenschaften und Erprobung an zwei verschiedenen pulverbasierten laseradditiven Fertigungsverfahren, dem selektiven Laserschmelzen und dem Laserauftragsschweißen, sollen die Materialien weiter optimiert werden. Die Optimierung soll in Konjunktion mit dem Fertigungsverfahren erfolgen.

Partners: Fehrmann GmbH (Koordinator), Helmholtz-Zentrum Hereon, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Einrichtung für additive Produktionstechnologien (IAPT)

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Development of advanced Laser based technologies for the manufacturing of Titanium HLFC structures

World air traffic volume is expected to double in the next 15 years and therefore the reduction of air transport contribution to climate change is nowadays one of the most important objectives for aircraft manufacturers. The reduction of environmental impact requires a continuous improvement in aircraft efficiency, which depends on the use of lightweight structures and efficient aerodynamics, among others. Hybrid Laminar Flow (HLFC) on wing and fin is one of the potential ways to enhance the efficiency of the aircraft and to achieve up to 10% of fuel saving in commercial passenger aircrafts. A design approach for HLFC structure is made of a perforated skin sheet which is stiffened by stringers. This structure is produced by joining parallel aligned stringers to laser micro-drilled thin skin. Afterwards, a straightening process is necessary to achieve the flatness requirements. DELASTI aims at the
development of (i) process and ii) system technology for reproducible laser welding and straightening of large titanium panels for HLFC structures, which shall iii) be assisted by an FE-based procedure focused on the prediction of 3D deformation and residual stresses. A revolutionary approach is sought which implies the use of one laser source as the only production means, in order to get the whole process in a single production stage. The project is co-funded by the Clean Sky 2 Joint Technology Initiative (CS2 JTI) which is a Public-Private Partnership between the European Commission and industry.

Participants: Lortek S Coop (Koordinator), Airbus Deutschland GmbH, Helmholtz-Zentrum Hereon

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Laser welding of newly developed Al-Li alloy

The LAWENDEL project aims to develop laser welding processes for aerospace applications by combining expertise in model based process design at the University of Manchester with a systematic experimental approach by the project coordinator, Helmholtz-Zentrum Hereon. The objective is to study the laser weldability of a newly developed Al-Li alloy, to determine the process parameters needed to obtain consistent laser welds, and to compare the mechanical behaviour with the conventional aluminium alloys series. The study will emphasize the microstructure characteristics and the mechanical properties of the weld joint to gain an understanding of the underlying factors controlling the performance of the welds. Three demonstrator panels will be welded by using the optimized parameters defined from the previous phase and then inspected by NDT in order to assure the structural integrity. The innovative combination of state of the art modelling and experiments will enable physics based optimization of the welding process with greatly reduced time and cost compared to traditional trial and error methods.
The project is co-funded by the Clean Sky Joint Technology Initiative (CS JTI) which is a Public-Private Partnership between the European Commission and industry.

Participants: Helmholtz-Zentrum Hereon (Koordinator), University of Manchester

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

more information

Superplastische Umformung von Titanwerkstoffen bei niedrigen Temperaturen

Durch den Einsatz einer neuen Variante der Titanlegierung Ti 6Al 4V mit extrem feinkörnigeren Gefüge ergibt sich ein enormes Potential zur Optimierung des Prozesses, da Prozesstemperaturen und Prozesszeiten gesenkt werden können. Dadurch soll eine deutliche Reduktion der Bauteilkosten bei gleichzeitiger Verbesserung der Umweltbilanz umgesetzt werden.
Die heute übliche Fertigung von Titanbauteilen verursacht hohen Zerspanungsverlust. Super-plastisches Formen bietet für viele Teile die Möglichkeit, das Ausgangsmaterial unmittelbar in die Endform zu bringen und Material einzusparen. Hierzu werden Bleche bei ~950°C pneumatisch in ein Werkzeug gedrückt. Nach Umrissbearbeitung und chemischem Abtragen der entstandenen Oxidschicht ist das Teil fertig. Durch Einsatz der feinkörnigen Variante von Ti 6Al 4V können die Umformtemperatur und -dauer deutlich reduziert und die Oxidschicht vermieden werden. Die umweltbelastende chemische Nachbehandlung entfällt, der Energieeinsatz je Bauteil wird reduziert. Außerdem können niedriger legierte, kostengünstigere Werkzeugwerkstoffe eingesetzt werden.

Participants: FormTech GmbH (Koordinator), Helmholtz-Zentrum Hereon, Heggemann AG, Access e.V.

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Extrapolation and technical and economic study of a Laser Beam Welding technology

Recent developments in the metallurgical field offer now laser weldable Al-alloys of the 2xxx series such as 2198 (Al-Cu-Li) with high structural efficiency index due to their high strength and low density. In the present project, butt and T shape welds from third generation Al-Li aluminum alloys will be manufactured with the available in-house laser beam welding facilities. Upon on the information gained in the project and in-house experience of the manufacturer a large, typical aeronautical structure with stiffeners will be manufactured and exploited in this project. A similar structure will be manufactured by the Topic Manager with the conventional riveting process. The projects aim to document the two processes (LBW and riveting), calculate the manufacturing costs of both structures, perform mechanical tests on the structures and finally compare the two structures in terms of the mechanical performance to manufacturing cost index. Besides cost, the environmental footprint of the two different structures will be calculated, as well the extrapolation of the LBW process from Laboratory to Industrial environment.
The project is co-funded by the Clean Sky Joint Technology Initiative (CS JTI) which is a Public-Private Partnership between the European Commission and industry following Article 171 of the Treaty.

Participants: University of the Aegean-Research Unit (coordinator), Hellenic Aerospeace Industry S.A., Helmholtz-Zentrum Hereon

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht

Werkstoff- und kostensparende Titanverarbeitungsverfahren und Neugestaltung der Fügezone CFK-Ti als Hybridstruktur zur Verbesserung von Lastübertragung und Lebensdauer

The project is funded within the Aviation Cluster Hamburg Metropolitan Region.
Topic of OPTISTRUCT ist the application of cost and resource saving production processes for titanium as well as new joining technologies between CFRP and titanium. Goal of the project is the identification of the optimization potential by establishing alternative process route for the production of integral Ti structures as well as the intelligent design of the interface Ti-CFRP with respect to cost effectiveness and performance improvement. The transferability to industrial application will be validated through the production of demonstrator samples.

Participants: FormTech GmbH (Koordinator), Helmholtz-Zentrum Hereon, Hein & Oetting Feinwerktechnik GmbH

contact


Dr. Nikolai Kashaev

Group Leader Laser Processing and Structural Assessment

Institute of Materials Mechanics

Phone: +49 (0)4152 87 2536

E-mail contact

Max-Planck-Straße 1
21502 Geesthacht