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ABSTRACT 

Many physicochemical processes depend on the diffusion of small molecules through solid 
materials. While crystallinity in polymers is advantageous with respect to structure 
performance, diffusion in such materials is difficult to predict. Here, we investigate the impact 
of crystal morphology and organization on the diffusion of small molecules using a lattice 
Monte Carlo approach. Interestingly, diffusion determined with this model does not depend on 
the internal morphology of the semi-crystalline regions. The obtained insight is highly valuable 
for developing predictive models for all processes in semi-crystalline polymers involving mass 
transport, like polymer degradation or drug release, and provide design criteria for the time-
dependent functional behaviour of multifunctional polymer systems. 

INTRODUCTION 

General introduction 

The diffusion of small molecules through polymer matrices is of great relevance 
for medical applications [1, 2]. In biomaterials, small molecule diffusion drives material 
functions such as polymer degradation [3] and drug release [4]. The functional behaviour 
of these materials strongly depends on the diffusion characteristics of small molecules such 
as water, bioactive molecules or oligomeric fragments. The diffusion of small molecules 
is typically associated with a random walk behaviour, and in case of water, diffusion rate 
constants are available from the literature [5-7]. However, it is questionable whether the 
hypothesis of a random walk behaviour still holds in non-isotropic materials like semi-
crystalline polymers. Here, amorphous regions are flexible and can take up small 
molecules from the environment, while crystalline regions are characterized by stacks of 
repeating lamellae, which are stabilized by van der Waals forces and reject small molecules 
from entering into these regions [8]. The effect of crystallinity on the diffusion of small 
molecules through semi-crystalline polymers has been studied with experimental [9, 10], 
analytical [11] and modelling approaches [12, 13]. The experimental investigations show 



that the diffusion coefficient of small molecules decreases with increasing crystallinity. 
The modelling approaches investigated the influence of the crystallites in semi-crystalline 
polymers on the diffusion of small molecules. The internal morphological structure of 
these crystalline regions, which consist of stacks of sheet like crystal lamellae, has been 
mainly ignored in these studies.  

The substructure of lamellar stacks can vary in many ways, for example in the 
number of lamellae within a stack, the area of the lamellae, the distance between lamellae 
and the orientation of the stack within the polymer. Each lamella has an orientation defined 
by the surface normal of the crystal lamellae. However, the orientation of the different 
stacks depends on the processing conditions, and can range from anywhere between 
completely random to fully aligned. Measuring the dependence of the diffusion of small 
molecules on the size and orientation of the crystalline regions requires a homogenous 
orientation and controlled size distribution of the crystalline lamellae in a semi-crystalline 
polymer, which is difficult to achieve. Semi-crystalline samples typically exhibit 
distributions in the organisation of crystalline orientations, which are influenced by its 
surface properties, kinetics of chemical reactions and transitions around the critical 
temperature Tcrit [14]. Measuring the local concentration of small molecules in a semi-
crystalline region requires analytical methods capable of a spatial resolution in the 
dimension of few nanometers, which relates to the distance between crystal lamellae [15]. 
Most available methods that can differentiate between water and other molecules do not 
provide such precision. For example, Nuclear Magnetic Resonance (NMR) can detect 
polymer morphologies on length scales of several μm [16] and neutron scattering can be 
used to estimate length scales of the radius of gyration Rg of long polymer chains if these 
chains are properly labelled. Yet, understanding how the number, size, and orientation of 
crystallites affect the diffusion behaviour of small molecules on a length scale of a few nm 
is not possible with these experimental techniques. However, understanding this behaviour 
is a prerequisite for predicting the functional behaviour of established semi-crystalline 
biomaterials like poly(ε-caprolactone) (PCL), poly(glycolide) (PGL), poly(L-lactic acid) 
(PLLA) and poly(p-dioxanone) as well as advanced materials like shape-memory 
polymers [17]. Hence, a modelling approach is required. 

Several approaches have been used in the past to study the diffusion of small 
molecules through polymers. Knopp et al. [18] and Nick et al. [19] calculated the chemical 
potential of small molecules in dense polymer systems with molecular dynamics 
simulations using thermodynamics integration and estimated the equilibrium water content 
and the water sorption behaviour in amorphous polymers of various materials. Although 
the simulation time of several ps and force field accuracy at this time were rather limited, 
the authors could successfully distinguish between different sorption behaviours for 
different polymer systems. Following simulations were able to calculate the diffusion 
constants of gas molecules through polymers [20-22]. With increasing computational 
power, it is now possible to determine the diffusion of bigger molecules through polymers. 
For example, Forrey et al. [23] calculated the diffusion constant of the drug tetracycline 
(TAC) in poly(styrene-co-isobutylene-co-styrene) (SIBS) with solvent tetrahydrofuran 
(THF) using simulations of about 1 μs. Their molecular dynamics simulations are based 
on all-atomistic force fields. While they are able to describe diffusion constants of small 
molecules in polymers accurately, they are limited to amorphous polymers, thereby 
excluding many materials of high technological relevance.  

Here, we use Monte Carlo (MC) calculations to simulate the diffusion of small 
molecules in a semi-crystalline polymer. Monte Carlo calculations are not limited to the 
characteristics of a specific force field. Random moves allow to explore the phase space 
without the risk of getting trapped in few low energy conformations. We assume that the 
diffusive molecules do not react with or bind to the polymers on time scales similar or 
faster than their diffusion time, do not aggregate and are small in comparison to the size of 
a polymeric lamella. Furthermore, we assume that there are no attractive potentials 



between small molecules and polymers and that repulsion is described with a lattice gas 
model. A sphere in a lattice model represents a small volume element of the polymer 
matrix. Such models have been used in the past to successfully model the diffusion and 
release of molecular drugs [22, 24-26]. However, the influence of the semi-crystalline 
morphology has so far been neglected because crystalline regions, if present in these 
models, have been represented as square shaped blocks distributed randomly through the 
polymer matrix. Here, we hypothesize that the impact of polymer crystallinity on the 
diffusion of small molecules can be assessed by inserting stacks of sheet-like structures 
into the lattice model.  

Starting point is a completely amorphous system, in which small molecules 
diffuse into the polymer from specific directions. We use a spherical system for our 
simulation because a complete analytical solution for the diffusion equation of a sphere is 
available. The uptake of small molecules is simulated for spheres with different radii R, to 
determine the minimum size of the sphere, which can represent normal diffusion without 
finite size effects. Then, we determine the minimum amount of Monte Carlo steps needed 
to reach an equilibrated structure with constant concentration c of small molecule clusters. 
Here, a small molecule cluster contains about 105 small molecules (see Supplementary 
Information). The volume elements in our model can contain either one such cluster or no 
clusters at all. The concentration is the number of occupied amorphous volume elements 
divided by the total number of amorphous volume elements. The final distribution of the 
molecules in this simulation is used as a starting distribution for the following simulations, 
in which we simulate the diffusion of small molecules through a sphere without and with 
parallel crystalline lamellae, which are impenetrable for these molecules. Hereby, the 
number, size and orientation of the lamellae are varied to represent different types of semi-
crystalline morphologies. We further extend our simulations to extremely spacious 
lamellae to look for deviations from the observations drawn from more regular 
morphologies. 

METHODS 

The diffusion of small molecules through an amorphous and a semi-crystalline 
polymer is modeled with a Monte Carlo approach on a three-dimensional lattice. In short, 
relative diffusion constants parallel and perpendicular to the direction of entry of small 
molecules into an amorphous polymer and in dependence of the orientation, size a, 
distance d and number n of crystalline lamella are calculated. The lamellae have the shape 
of cuboids with height 1 and a quadratic base of side length 2 a + 1. All spatial and temporal 
quantities are reported in lattice unit length lu and MC time lt. Concentrations are reported 
relative to the maximum concentration (cmax = 1), which corresponds to a sphere where 
every amorphous volume element of the sphere is occupied with a cluster of small 
molecules. An experimental validation of these dimensions is not performed because the 
model with one experimental input parameter (diffusion constant D) and two unknown 
quantities (lu and lt) is underdetermined. Figure 1A shows a schematic description of the 
parameters of the simulation. A detailed description about the methods incl. the estimation 
of the statistical error can be found in the Supplementary Information.  



 

Fig. 1 Schematic visualization of the Monte Carlo model. A) Sphere with three lamellae 
oriented perpendicularly and exits parallel (PA) and perpendicular (PE1-4) to the direction of 
small molecule entry. B) Lattice model for sphere with radius R = 9 and positions of small 
molecule entry (EN) and two exits (PE2 and PE3). C) Lamella with a = 5 in lattice 
representation. D) Cascade of simulations: D1) Small molecule uptake from 6 opposing 
directions, D2) Small molecule uptake from one direction, D3) Small molecule diffusion 
through amorphous sphere, D4-9) Small molecule diffusion through semi-crystalline sphere 
with lamellae orientations parallel (D4, D6, D8) and perpendicular (D5, D7, D9) to the direction 
of small molecule entry, D4/5) One Lamella of different size a, D6/7) Two Lamellae with 
different distances d, D8/9) 5 Lamellae. Directions of small molecule entry and exit are marked 
with red, dotted and green, solid arrows, respectively. 

RESULTS AND DISCUSSION 

Theory of diffusion in a sphere 

Here, we describe the diffusion of small molecules through amorphous and semi-
crystalline parts of a polymer, which are represented by a sphere of cubic volume elements. 
Fick’s law describes normal diffusion in homogenous media. The solution for this law for 
a sphere is: 
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The equation describes the release of small molecules from a sphere with 
concentration c or the sorption of small molecules into an empty sphere. The individual 
contributions of this multi-exponential function decrease very rapidly with increasing n 
and the function is dominated by its first term (n = 1). The function is usually approximated 
by a stretched exponential function: 
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Here, b and  are fitting parameters, which describe the physics of the sorption 
of small molecules. The latter is the reduced time, measured in units of R2/D. For an 
infinitely big sphere, fitting the exact solution of Fick’s law with the stretched exponential 
function gives bfit = 0.68 and fit = 0.054 R2/D [24]. 

Uptake of small molecules from 6 directions 

In a first step, the uptake of small molecules from specific points of entry is 
simulated (see Fig. 1D1). This is different from the theoretical case because the points of 
entry are not homogenously distributed around the center of the sphere. We model a 
completely amorphous sphere. This means that all volume elements of the sphere are 
penetrable for clusters of small molecules with the same probability. Monte Carlo 
calculations have been performed for small molecules entering the sphere from 6 opposite 
directions via its outer volume element. This corresponds to a symmetric, but 
inhomogeneous sorption of small molecules. Fig. 2A shows the concentration of the sphere 
as a function of the Monte Carlo time for the simulation of a sphere with radius R = 7 up 
to a maximum concentration of c = 0.9. It can be seen that the increase follows a stretched 
exponential function.  
 

 
Fig. 2 A) Concentration c as a function of the MC time for R = 7 and filling the sphere from 6 
directions. B) Starting configuration of clusters of small molecules (gold dots) for following 
simulations with R = 10. Position of small molecule entry (red triangle) and exits (green stars) 
and of 3 lamellae with a = 5 and d = 2 (deep sky blue squares) are shown for illustration. C-F) 
Fitting parameter  and b as a function of sphere radius R for simulations of sphere filling from 
6 (C, D) and from 1 directions (E, F). Data shown as blue dots and linear fit for all data (C) and 
R ≥ 6 (E) shown as orange line. 

 
Monte Carlo runs have been performed for different radii R of the sphere up to a 

concentration c = 0.5 and fitted with a single exponential. Figs. 2C and 2D represent the 
values of the fitting parameters  and b as a function of sphere radius R.  

The reduced time depends on the square of sphere radius R and the slope is 
74.4. Homogenous diffusion in three dimensions with 6 degrees of freedom would 
correspond to an increase of f fit = 0.324 with f = 6 the number of degrees of freedom per 
molecule and fit the value of the fitting parameter of the homogenous solution. One should 
keep in mind that the slope of vs. R2 is the inverse of the diffusion constant D, i.e. the 



greater the slope, the slower the diffusion.  The quadratic approximation reaches steady 
state (= 0) for a sphere radius of R = 5.2 which means that there is a transition from a 
retarded diffusion due to finite size effects for R < 5.2 to normal diffusion for R > 5.2. Fig. 
2D shows that the parameter b has values around 1. Higher values than b = 0.61 are 
connected to a slower filling of the sphere in comparison to the homogenous case. As the 
sphere is filled from specific locations on its surface, diffusion is retarded to the limited 
accessible volume, which only allows moves within the sphere. The results show that the 
simulated filling of the sphere is described by a normal, retarded diffusion. 

Uptake of small molecules from 1 direction 

After modelling diffusion from 6 directions, diffusion within the sphere is 
modeled for an entry of small molecules from only one direction (see Fig. 1D2). This 
represents the situation that diffusion is not random, but has a preferred orientation, and 
prepares the following simulations with crystals below. The results of Monte Carlo 
calculations with different sphere sizes are visualized in Figs. 2E and 2F. Fig. 2E shows 
that normal diffusion starts for sphere sizes R > 6. The deviation for smaller sphere sizes 
points to a retarded diffusion. Smaller spheres have a higher surface area to volume ratio. 
As a result, the fraction of random moves outside the sphere increases with decreasing 
sphere size. Since these moves are rejected, this leads to a retarded diffusion. The slope of 
355.5 in the -R2-Plot for R > 6 is about 5 times bigger than the slope of the same plot in 
the homogenous case (Fig. 3C). The diffusion is therefore 5 times slower because the slope 
is inversely proportional to the diffusion constant. 

Diffusion through an amorphous polymer 

After having established that filling a sphere with Monte Carlo calculations 
follows normal, retarded diffusion for sphere sizes with a radius R > 5, directional diffusion 
is investigated. Monte Carlo calculations are performed for a sphere under variation of the 
radius, in which the small molecules enter from one direction and can leave the sphere in 
the other 5 directions, one of them opposite to the direction of entry and the other four 
perpendicular to the direction of the entry (see Fig. 1D3). This system is used to measure 
the influence of lamella orientation on the diffusion behavior of small molecules in the 
next sections. Here, we focus on an amorphous polymer without lamellae. In order to 
describe the relative diffusion of small molecules in detail, it is important to start with an 
equilibrated system. Tables S1 and S2 show the number of clusters of small molecules, 
which leave spheres of different radii R parallel or perpendicular to the direction of entry 
after 106 and after 107 MC steps, respectively.  

It can be concluded that 106 MC steps are not enough to reach a ratio of 20%, 
corresponding to the ratio of small molecule entries to exits, between clusters of small 
molecules entering and leaving the sphere for R > 8, but 107 steps are enough for R = 10. 
We therefore used the distribution of small molecules from the simulation with R = 10 
after 107 MC steps, shown in Figure 1B, as starting configuration for all following 
simulations of semi-crystalline elements and perform simulations of similar length with 
the same sphere size. Furthermore, one can see that the ratio of clusters of small molecules 
leaving the sphere parallel to the direction of entry to the clusters of small molecules 
leaving the sphere perpendicular to the direction of entry is about 22-26%, corresponding 
to the number ratio of small molecule exits (1:4). In other words, the direction of small 
molecule exit is statistically distributed, as it should be in an amorphous system. 

 



Diffusion through a semi-crystalline polymer 

In the previous step, a purely amorphous polymer has been modeled and it was 
shown that the diffusion of small molecule clusters parallel and perpendicular to the 
direction of molecule entry are similar, which is reflected by the ratio of 1:4 between the 
number of exits parallel and perpendicular to the direction of entry (see Fig. 1). In the next 
step, the model is extended to represent semi-crystalline volume elements. Therefore, 
stacks of impenetrable lamellae are inserted into the sphere. Here, quadratic lamellae are 
considered, which are located around the center of the sphere, either parallel or 
perpendicular to the direction of the entry of small molecules. The height of the lamellae 
is one unit length lu and the length of the quadratic area is 2a+1. Table 1 shows the number 
of small molecule clusters leaving the sphere parallel and perpendicular to the direction of 
entry for different lamellae orientations and different values of a (see Figs. 1D4 and 1D5), 
d (see Figs. 1D6 and 1D7) and n (see Figs 1D8 and 1D9). 
 

Table 1. n number of lamellae, a size of a lamella, d distance between two lamellae, Ne 
clusters of small molecules within sphere at the end of the simulation, Npar clusters of small 
molecules leaving sphere parallel to its entry, Nper clusters of small molecules leaving sphere 
perpendicular to the direction of entry, fparper fraction of small molecule clusters leaving 
parallel vs perpendicular to the direction of entry. The error is the standard deviation from 8 
independent MC runs. 

Orientation a) n a d Ne ce Npar Nper fparper 
        [%] 

b) 0 - - 781.7 ± 15.3 18.9 248.6 ± 9.5 1052.7 ± 27.8 23.6 ± 1.5 
Parallel 1 3 - 766.0 ± 27.1 18.7 265.6 ± 17.1 1075.3 ± 35.6 23.6 ± 2.4 
Parallel 1 5 - 759.1 ± 18.6 18.9 270.0 ± 11.6 1072.4 ± 22.1 25.2 ± 1.6 
Parallel 1 7 - 749.0 ± 16.5 19.1 259.4 ± 14.0 1083.9 ± 21.5 23.9 ± 1.8 

Perpendicular 1 3 - 772.4 ± 14.3 18.9 251.4 ± 15.4 1074.1 ± 39.0 23.4 ± 2.3 
Perpendicular 1 5 - 771.6 ± 23.1 19.2 263.4 ± 16.6 1059.1 ± 36.1 24.9 ± 2.4 
Perpendicular 1 7 - 748.7 ± 24.9 19.1 263.3 ± 17.1 1090.7 ± 12.6 24.1 ± 1.8 

Parallel 2 5 2 743.7 ± 16.7 19.1 269.7 ± 10.7 1106.3 ± 33.6 24.4 ± 1.7 
Parallel 2 5 3 743.3 ± 19.8 19.0 267.6 ± 8.2 1108.4 ± 34.1 24.1 ± 1.5 
Parallel 2 5 4 731.1 ± 30.2 18.7 265.1 ± 13.0 1116.1 ± 36.1 23.8 ± 1.9 

Perpendicular 2 5 2 748.0 ± 14.6 19.2 262.0 ± 16.4 1102.6 ± 36.5 23.8 ± 2.3 
Perpendicular 2 5 3 745.4 ± 19.9 19.1 265.6 ± 10.2 1111.9 ± 42.0 23.9 ± 1.8 
Perpendicular 2 5 4 748.0 ± 14.6 19.2 262.0 ± 16.4 1102.6 ± 36.5 23.8 ± 2.3 

Parallel 5 5 2 746.0 ± 15.3 21.1 257.4 ± 13.5 1130.3 ± 10.7 22.8 ± 1.4 
Perpendicular 5 5 2 745.6 ± 29.0 21.1 267.9 ± 14.6 1118.0 ± 47.9 24.0 ± 2.3 

Parallel c) 1 5 - 769.7 ± 19.7 19.1 251.4 ± 10.6 1073.3 ± 28.2 23.4 ± 1.6 
Parallel d) 1 6 - 443.4 ± 15.5 19.4 370.4 ± 21.0 1773.9 ± 34.8 20.9 ± 1.6 

a)Orientation of lamellae with respect to orientation of small molecule entry 
b)Amorphous sphere 
c)Simulation with corrected MC time 
d) Simulation with thick lamella (h=11) 

The number of clusters of small molecules within the sphere Ne decreases from 
the amorphous case to the situation with lamellae due to the reduced available volume. 
However, this is not just an effect of the replacement of clusters by lamellae in the starting 
configuration, because the number of clusters leaving the sphere increases. Introducing 
stacks of lamellae in an amorphous sphere introduces an additional pressure on the 
remaining clusters between the lamellae. The effect increases with increasing number of 
lamellae per stack. As a result, the concentration ce at the end of the simulation, calculated 
with respect to the available volume of the sphere by subtraction the volume of the 
lamellae, is in most of the cases higher with lamellae than without lamellae. The directional 



diffusion is marginally influenced by the size of the lamellae. One small lamella with a = 
3 does not influence fparper, but larger lamellae seem to increase the diffusion in the direction 
of entry in comparison to its perpendicular direction independent of the orientation of the 
lamellae. This effect could be explained by the negative pressure on the side of the stack 
of lamellae opposite to the direction of entry, which leads to a removal of the clusters in 
this area. 

The orientation of one lamella within the sphere does not seem to have an 
influence on the directional diffusion of small molecules. This seems to be different if two 
lamellae are introduced in the sphere. If these two lamellae are orientated parallel to the 
direction of small molecule entry, fparper is always higher than for a perpendicular 
orientation between lamellae and small molecule entry. Crystalline lamellae embedded in 
an amorphous environment represent an obstacle included in a lamellar flow field of 
diffusing clusters of small molecules. The main direction of the flow field is defined by 
the direction of entry of these molecules into the sphere. If a thin obstacle is orientated 
parallel the flow field, the lamellar flow field is only marginally influenced by the obstacle 
because the molecules diffuse around without changing their general direction. If the 
obstacle is orientated perpendicular to the flow field, all molecules have to diffuse around 
the edges of the obstacle. This increases the local concentration of clusters close to the 
edges and increases the size of the obstacle perpendicular to the lamellar flow field, 
therefore reducing the flow of small molecules in this direction. 

The value of fparper for simulations of two lamellae with a = 5 is about 23.8% for 
different distances d between the lamellae for a perpendicular orientation of the lamellae 
with respect to the direction of small molecule entry and only slightly varies between 
23.8% and 24.4% for a parallel orientation. The data suggest that the distance between two 
lamellae has an influence on the directional diffusion of small molecules around it. 

As directional diffusion is only marginally influenced by the insertion of a stack 
of lamellae around its center, we estimate the magnitude of the diffusion constant in such 
a semi-crystalline volume element with respect to a completely amorphous element. For 
free diffusion, small molecules move according to the following law: 
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We calculated x (in length of lu) and t (in MC times lt) for every cluster of 
small molecules, which did not enter or leave the sphere during the simulation. Fig. 3A 
and B show the normalized distribution of x and (x)2, respectively, for the amorphous 
sphere and for a sphere with a stack of 5 lamellae, which represents a volume element of 
high crystallinity. 

 

 
Fig. 3 Normalized distribution of distances x (A) and square of distances (x)2 (B). The data 
belong to the simulations of the amorphous sphere (blue opaque background) and of the sphere 
with n = 5 lamellae with a = 5 and d = 2 perpendicular to the entry of small molecules (light 
orange transparent background). The overlapped area is visualized with a mixed colour. (C) 
Description of the direction of diffusion with respect to the orientation of the lamella. Parallel 
and perpendicular orientation are represented with violet solid and yellow dashed arrows, 
respectively. 



 
The distributions of distances without lamella and with a stack of 5 lamellae 

nearly overlap. This means that clusters of small molecules, which stay in the sphere 
through the full duration of the simulation, walk similar distances. The diffusion constants 
calculated for all of these clusters are very similar: Damorph = 0.001592 lu

2/lt for the 
amorphous sphere and Dcrystalline = 0.001545 lu

2/lt for the sphere with a stack of 5 lamellae. 
The ratio of Dcrystalline / Damorph = 0.97 shows that the insertion of a stack with 5 lamellae 
decreases the diffusion rate constant of small molecules by only 3%. The results for other 
crystal morphologies and orientations are similar. 

Diffusion through multiple stacks of crystalline lamellae 

The previous results show that the diffusion of small molecules through a semi-
crystalline polymer that contains one stack of parallel lamellae embedded in an amorphous 
environment is independent of the internal characteristics of the lamella. This is even the 
case if a stack of lamella is modeled, which represents the ratio of height to base side length 
of a lamella in the real world (see Supplementary Information). A typical semi-crystalline 
polymer contains multiple domains with stacks of crystalline lamella. If the distance 
between these stacks is big in comparison to the size of the lamella, they represent 
independent obstacles for the diffusion of small molecules and the stacks of lamellae do 
not influence the diffusion of small molecules. If the distance between the stacks is small 
in comparison to the size of the stacks, molecules diffuse preferably along the base of the 
stacks because the space between stacks is limited. To mimic this effect, we simulated the 
diffusion around a thick lamella with height h = 11. Furthermore, we chose a lamella with 
a = 6 which ensures that the distance between the sides of the lamella and the end of the 
sphere (<= 4 lu) is markedly smaller than the height of the lamella. Here, the end of the 
sphere represents a second lamella perpendicular to the direction of the entry of clusters of 
small molecules because moves outside the sphere are rejected (except at the positions 
where they can diffuse out of the sphere). In this case, the ration fparper = 20.9 is lower than 
for the thin lamellae. This means that the number of molecules diffusing perpendicular out 
of the sphere with respect to the direction of entry is higher than the number of molecules 
diffusing parallel out of the sphere. This shows that the small molecules preferably diffuse 
around multiple stacks of lamella, which are close to each other instead of diffusing 
between them.  

The result shows that the diffusion of small molecules through semi-crystalline 
polymer with separated stacks of semi-crystalline polymers is independent of the internal 
morphology of the crystalline region. If the distance between multiple stacks of lamellae 
is small in comparison to the size of the lamella, diffusion between these stacks is reduced. 
This can happen for crystals, which grow from the melt to large spherulites. The result 
adds additional information to current implementations of Monte Carlo calculations on 
diffusive molecules in the vicinity of polymer chains, which are focused on amorphous 
polymers [27, 28]. The model does not include interactions of polymers with small 
molecules, which could be studied with molecular dynamics simulations [29, 30]. The 
outcome of this study shows that the diffusion constants determined for the amorphous 
state in MD simulations have the potential to be converted to the semi-crystalline state 
independent of its morphology, if the crystalline content of the polymer is considered [31]. 

CONCLUSION AND OUTLOOK 

In this paper, the diffusion of small molecules through amorphous and semi-
crystalline polymers was investigated via Monte Carlo calculations of a sphere on a lattice 



model. It has been shown that differences in the diffusion of small molecules through an 
amorphous and a semi-crystalline region are less than 3%. The internal morphology in 
terms of size and density of a single stack of lamellae does not change the time or direction 
of the small molecule diffusion. Small changes are detected for the relation of the direction 
of diffusion and the orientation of the lamellae with respect to the entry of small molecules. 
Overall, our simulations suggest that crystallites influence the diffusion of small molecules 
through polymers only by reducing the available volume. However, if the crystalline 
region contains multiple stacks of crystalline lamellae, whose inter-stack distance is small 
in comparison to the size of the stack, diffusion through the crystalline region is reduced. 
This finding greatly facilitates the development of predictive models describing kinetic 
processes such as hydrolysis or drug release in semi-crystalline polymers, which are highly 
relevant for the design of multifunctional materials.  

If the orientation of the crystallites does not influence the diffusion of small 
molecules, they can be used for other functions, which are then independent from 
diffusion. One example are shape-memory polymers (SMP) [32]. These polymers have the 
capability to change their shape upon application of an external stimulus. The change in 
shape is often connected to a transition of the microscopic substructure. If such a SMP 
switches from an amorphous phase to a glassy phase, it changes its diffusion and the 
properties are not independent from diffusion. However, if the switching domains in SMP 
changes to a semi-crystalline state, but always leaves an amorphous, viscoelastic subphase, 
the shape-memory effect could be designed to be almost independent from diffusion. This 
consideration is also relevant in SMP actuators. These actuators have an additional phase, 
a reshapeable internal skeleton, which implements or adjusts the alignment of actuation 
domains on the nm length scale. In case of thermally controlled SMP actuators, the 
skeleton has to maintain the alignment over multiple heating and cooling cycles, while 
being sufficiently elastic to allow shape changes. The current study suggests that the 
functions of this skeleton phase are also independent of diffusion if the distance of the 
stacks of crystalline lamella is sufficiently big. 

SUPPLEMENTARY INFORMATION 

Number of molecules per volume element; Description of the methods incl. 
statistical error estimation; Tables S1 and S2 with statics about the simulations for the 
estimation of the number of MC steps required to achieve an equilibrium distribution; 
Diffusion through a semi-crystalline polymer with modified MC time.  
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