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Abstract

A thermo-mechanical peridynamic model using adaptive grid refinement is developed
to investigate crack propagation in ceramics. Compared to a standard peridynamic
model, using uniform grid, this approach allows to increase the resolution of analysis
only in the critical zones. The performance of this approach in solving 2D thermo-
elastic problems is examined and then it is applied to study the fracture of a ceramic
disk under central thermal shock. Finally, the proposed approach is adopted to investi-
gate thermal shock in thin rectangular and circular slabs. The accuracy of the method is
evaluated by comparing its numerical results with those obtained by applying the finite
element method (FEM), a standard peridynamic approach or with experimental data
available in the literature. A proper agreement is achieved at a smaller computational
cost.

Keywords: Peridynamics, thermal shock, adaptive grid refinement, ceramics,

thermo-mechanical

1. Introduction

Thermal shock is a phenomenon characterized by significant inhomogeneous stresses
suddenly occurring in brittle materials, such as ceramics, due to a transient temperature.

Complex crack patterns may emerge on ceramics as a crucial outcome of thermal shock
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induced stresses. Ceramics have a wide range of applications in high-temperature in-
dustries such as aircraft propulsion, hypersonic vehicles, marine propulsion and ther-
mal protection structures due to their stability above the melting point of metal alloys.
Hence, a basic understanding of thermal shock failure is required in the design of the
aforementioned structures [1].

Numerous experimental and numerical studies have been performed over the last
few decades to investigate the mechanisms of thermal shock failure in ceramics. Among
the experimental studies, Jiang et al [2] and Shao et al [3] have studied thermal shock
in thin rectangular ceramic specimens, while in the studies by Honda and Liu [4-6]
the thermal shock in circular ceramic specimens is explored comprehensively. Ther-
mal shock cracks generally exhibit periodic and hierarchical damage patterns. In the
studies by [7, 8], the length and stability of the crack patterns have been scrutinized
theoretically. Among the theoretical studies, thermal shock resistance has been investi-
gated from the viewpoint of stress and energy [9, 10]. Later, thermal shock parameters
related to the fracture initiation, crack propagation and crack arrest criteria of ceramic
specimens were investigated in [11, 12].

However, available computational techniques based on the classical theory of con-
tinuum mechanics cannot accurately describe how complex crack patterns nucleate and
evolve. To this end, several researchers have introduced a wide range of computa-
tional techniques to solve the problem and equipped computational methods based on
the classical theory with the capability to precisely describe crack propagation phe-
nomena. Among the numerical methods, the boundary element method (BEM) was
used to simulate quenching thermal shock [13, 14]. Later, the extended finite element
method (XFEM) with nodal enrichment [15—-17], the phase field method [18, 19], dam-
age mechanics-based model [20] and nonlocal damage model [21] have been applied to
reproduce the multiple cracking patterns in the quenching test with different levels of
success. The majority of these techniques make use of ad-hoc modifications and sim-
plifying assumptions. Furthermore, their application to 3D problems generally turns
out to be very complex.

Peridynamics is a nonlocal theory which was first proposed by Silling et al. [22,

23]. Peridynamics makes description of discontinuous problems in solid mechanics
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very convenient. It employs integral equations rather than partial differential equations
(PDEs) to determine the internal forces over the continuum. Applications of peridynam-
ics to solve various problems with discontinuity can be traced in [24-28]. In [29, 30],
single and multiple pre-existing initial cracks due to prescribed thermal temperature
history (without applying any thermo-mechanical coupling) are simulated using the
peridynamic approach. Furthermore, the peridynamics formulation was developed for
multiphysics problem; e.g. thermal diffusion in [31]. Soon afterwards, heat transfer
equations for 1D and 2D problems were reformulated in [32] and [33], respectively.
Moreover, Oterkus et al. [34] carried out a detailed investigation of thermal diffusion
problems by using state-based peridynamics (SB-PD).

Agwai and Oterkus ef al. investigated thermo-elastic problems without any crack
propagations via peridynamic [35, 36]. Lately, thermal cracking of uranium dioxide in
fuel pellets and simulation of thermal shock cracking in ceramics using a bond-based
peridynamic model (BB-PD) have been thoroughly explored in [37]. Furthermore, in
[38], 2D and 3D thermal-shocks of ceramic slabs are simulated using a SB-PD model.
Other applications of peridynamics to simulate thermal shock crack propagation in brit-
tle materials, e.g. rocks, can be traced in [39-42].

Itis remarkable that the conventional peridynamic models are computationally more
expensive than the methods based on the classical theories due to their nonlocal nature.
Moreover, in a conventional peridynamic approach, a constant horizon size as well as
a uniform grid are used. Therefore, the efficiency of the approach is strongly affected
when a fine grid spacing is adopted; although the finest grid size would be usually
needed only in specific zones [43]. There have been many attempts so far to maintain
the computational accuracy and to reduce, at the same time, the computational cost of
peridynamic models. Possible ways to achieve that is to couple peridynamic models
with other methods [44—47], to use adaptive refinement algorithms [30, 43, 48, 49], or
benefiting from parallel computing techniques [50].

The main purpose of the present study is the solution of thermal shock problems
in ceramics, including crack propagation, using a multi-grid peridynamic model. The
model is originally introduced in [49] for dynamic propagation of cracks merely under

mechanical loading conditions. The method adaptively makes use of a variable grid
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size at different parts of the solution domain. The problem domain, €2, is divided in two
regions Q1 (coarse) and Q™ (fine), where two different grid spacing are used. By apply-
ing the fine grid size near the boundaries of the domain, one is able to reduce the surface
effect and consequently to increase the accuracy of the peridynamic model. The adap-
tive grid refinement model proposed in [49] offers some advantages, in terms of accu-
racy and efficiency, which can be highly important for the coupled thermo-mechanical
problems conducted in the present study. In fact, the model proposed by the authors in
[49], exhibits highly accurate results, with respect to a standard peridynamic model dis-
cretized using a uniform grid of nodes, not only at the level of displacement but also at
the level of velocity and acceleration. In addition, the multi-grid model has a negligible
loss of volume due to non-uniform discretization in comparison to other available grid
refinement approaches in the literature. These features culminates in a robust model
that performs properly even in situations where intensive propagating waves and, con-
sequently, nucleation and propagation of cracks with complex patterns occur. Such
situations can be abundantly found in the case of thermal-shock (quenching).

The aforementioned advantages of the multi-grid model in [49] led us to apply that
for thermo-mechanical problems including cracks. Basically, for this class of problems
most often, to capture a converged solution with a proper level of accuracy, a very fine
discretization in space and time for the whole problem domain of a standard peridy-
namic model is required. Therefore, application of a standard peridynamic model to
such cases turns out to be computationally very prohibitive. We shall show that the
multi-grid model developed in the present study can be a good candidate to alleviate
these shortcomings of the standard peridynamic model. By the present model, it is pos-
sible to increase the resolution of the solution at critical parts, which require a fine dis-
cretization, adaptively. This strategy contributes to a significant reduction in the com-
putational cost. Another important aspect of the present paper is the use of an adaptive
refinement technique in both thermal and mechanical parts of the solution. Comparing
the results of the proposed method to those generated by standard peridynamic models,
reveals that one can obtain very similar results at a smaller computational cost. This
method produces accurate results in both temperature and displacement fields.

The outline of the paper is as follows. Section 2 provides an overview of weakly
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Figure 1: A generic problem domain and representation of horizon, source and neighboring material points

in peridynamics.

coupled thermo-mechanics and its discretization. The mathematical description of the
coupling between different grids is illustrated in Section 3, while in Section 4, we ex-
plain an efficient way to implement the adaptive refinement technique. Efficiency and
accuracy of the method are investigated by several examples in Section 5. Section 6

concludes the paper.

2. Overview of weakly coupled thermo-mechanical peridynamics

2.1. Thermal problem

The application of a SB-PD model to heat conduction problems was firstly intro-
duced by Oterkus ef al. [34]. The nonlocal interaction between material points, for ther-
mal diffusion problems using the peridynamic framework, is related to the exchange of
heat flux. Hence, a material point x (the source node) is able to exchange heat flux with
the so called family points located within its integration domain; i.e, X’ € H(x) (see
Figure 1). In this way, the transient form of the SB-PD thermal diffusion equation can

be written as:

pe 0(x,1) = / (h[x,1(x" = x) — h[X',1)(x = X)) dV,y + hy(x,1) €))
H(x)
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where hA[X, t] represents the heat flow scalar state and A (X, ?) is the heat source due to
volumetric heat generation. In fact, to each material point X an infinitesimal volume d V;
is allocated. In Eq. (1), p and c,, are the density of the material and specific heat capacity,
respectively. Moreover, # and @ denote the temperature and its first time derivative at
point x, respectively. The relative position between two material points & = x — x’ is
called a bond. In BB-PD, it is assumed that the heat flux only takes place over a bond
connecting two material points, and it depends on the temperature difference between
the points. In this sense, the heat flux that flows from x’ to x, h[x, t){x’ — x), and the
one which flows from x to x’, h[x, t](x — x’), are equal in magnitude but opposite in
direction. Accordingly, in the BB-PD formulation, the heat flux towards the source

point can be written as:
£ (0.0.X'.%) = Bl = %)~ AIX. A -X) = 3= (-31) @)

Therefore, substitution of Eq. (2) for Eq. (1), leads to the following heat conduction

equation:
pe,d(x,1) = / fn (07,0,X',X) dVyy + hy(x,1) 3)
H(x)
where f}, is given by [34]:
7 (x',x,t
fh (0,,0,X,,X) = CTH% (4)

in which 7 (x’, X, t) stands for the temperature difference between the interacting points
as:

t(x',x,1) =0 (x',1) =0 (x,1) )
In Eq. (4), ¢y represents the thermal micro-conductivity in peridynamics which can
be expressed in terms of the standard conductivity for a specific horizon. This can be
done by equating the peridynamic thermal potential to the classical thermal potential
at a material point (the details are given in [33, 34]). In this way, the thermal micro-

modulus ¢y can be found in terms of the thermal conductivity y for 1D, 2D and 3D

cases as:
%, 1D problems
cry = %, 2D problems (6)
%, 3D problems

10
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Figure 2: Peridynamic nodes and their interactions.

in which, A and 7 represent the cross-sectional area and thickness of the volume allo-
cated to the material point, respectively.

The continuum formulation can be discretized in several ways [51]. In the present
study, the discretization is done pursuing a meshfree approach originally introduced in
[52]; the discretization is simple to implement and it is commonly applied by many
researchers (see Figure 2). In 2D problems, which is the case for the present study,
the domain is represented by a grid of points; hereinafter are called nodes. To each
node a square cell, with a volume equal to Ax27, is allocated. The cells are centered at
their corresponding nodes. As shown in Figure 2, each node x; interacts with all the
nodes within its horizon; we refer to x; and x ; as the source node and the family node,
respectively. The horizon size is taken equal to 6 = mAx. The value of m determines
the number of interacting nodes. In the conventional discretization, Ax, é and m are
taken constant in the whole domain. Furthermore, time can be discretized into instants
asty,ty,...,1t,, .... Inthis way, by adopting the one-point Gauss quadrature rule for the

integration in space, the discretized form of Eq. (3) can be written as:
N
pe,0 = Y fu (2% = %)) V; + @)
j=1

where N stands for the total number of family nodes and V; represents the volume of

node x;. To proceed in time, various time integration schemes can be applied. In this

11
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study, a forward difference time marching is employed; therefore, having known the

field variable at time instant ¢, the solver can advance to the next time step as follows:

N

At

1 _ TH

ol = 0" + e 2‘1 Fu (705 = X))V + 1 )
j:

where, Aty is the incremental time step corresponding to the thermal analysis and

h’g‘(i) = h(x;,t,). Atyy must be selected within a proper range to achieve a stable solu-

tion. The upper bound of the range can be expressed as [34, 52]:

pe,

YNy
J=1 e

Atry < ©))
2.1.1. Boundary conditions

Thermal diffusion boundary conditions, which are Dirichlet-type, should be im-
posed on corresponding boundary surfaces denoted by I'r.. For this type of conditions,
it just suffices to assign a temperature to each node located within a distance Ax close
to I', (Figure 1). On the other hand, Neumann-type boundary conditions appear in the
form of heat flux, convection, and radiation.

To apply heat flux boundary conditions, at first the rate of heat entering into the
body from the bounding surface must be calculated. Then the rate of flowing heat Q
must be converted to a volumetric value Q; called heat generation per unit volume. In
this way, the heat flux portion of each node, on the corresponding boundary region, can
be specified. By assuming an identical cross-sectional area for the nodes we have:

g__/sq.ndS__q.n

=y SAx Ax

10)

where q is the heat flux, .S is the area to which the heat flux is imposed (i.e, the surface
area of I'g; shown in Figure 1), and V is the volume of the boundary region.

The convection boundary condition (Neumann), for example in the case of a quench-
ing test where heat transfer between the surface of a body and its surrounding takes

place, is defined as:

qx.0n-n=h(0x,1-0,), XETlg, (11)

12
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where, h is the convective heat transfer coefficient, 6 is the temperature of the fluid
surrounding the domain (see Figure 1). Consequently, similar to Eq. (10), volumetric

heat generation due to the convection boundary condition is given by:
hy(x,t) = ALh (900 - 0(x, t)) , xe€l'g 12)
X

The third Neumann-type boundary condition is radiation. Similarly, heat generation
per unit volume for radiation heat transfer is assigned to the nodes located at I' g5 (see
Figure 1) as:

1
s = 2260 (ajs - 0*(x, n), xelg (3)

h
where o, € and 0 are the Stefan-Boltzmann constant, emissivity of the surface and
temperature of the surface surrounding the body, respectively.

In the subsequent section, the strategy to cope with the mechanical part of solution,

using peridynamics having a similar discretization scheme in space, is illustrated. Then

the way of incorporating the thermal effects into the mechanical solution is described.

2.2. Mechanical problem

Let us consider again a body, with an initial configuration Q, occupying a 3D region

in space (see Figure 3). Based on SB-PD, the equation of motion is written by:
p(x)az—u(x, 1) = / (TIx, t)(x" — x) = T[x', 1[(x = x')) dV}s + b(x,1) (14)

or* H)

where T stands for the force vector state, which the material point x’ exerts on mate-
rial point x. In Eq. (14), similar to the thermal diffusion problem, two material points
interact only within a finite distance, 6. Moreover, p, u and b are the mass density,
displacement field and body force density, respectively. According to the linearized

formulation proposed in [23], the force vector state T is given by:

s)

3k6 15;4’@ d) Y[x, 1|(x' —x)

I _x) = ( 2%V
T[x, 1)(x X>—< m 2t Y [x, 11(x" — x)||

in which k and 4’ are the material parameters related to Young’s modulus E and Pois-

son’s ratio v, while the position of point x at time ¢ is denoted by y(x, ) = X + u(x, 7).

13
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Figure 3: Kinematics of the reference and deformed configurations for a peridynamic continuum.

Therefore, one may obtain the deformation vector state, Y[x, t]{x’ — x), and extension

scalar state, e[x, t](&), as:

Y[x, 7(x = x) = y(x', 1) = y(x,7) (16)

elx, 1K&) = llyx',H) — y(x, 0l = lI&ll a7

where the relative displacement vector between two points is defined as n = v’ — .

Moreover, the deviatoric state component of the single bond elongation e is given by:

el =e-

W

x (18)

In Eq. (15), w is a scalar influence function that allocates a weight to each bond. The

peridynamics counterpart of volume dilatation AV /V can be expressed by:

0=Zwxee== w5||&E||>dE (19)
m m H(x)

where the weighted volume, m, is given by:

m = x'§=/ wl|&l*dé (20)
H(x)
and the total stretch in each bond can be written as:

ey
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Figure 4: The force density schemes in (a) BB-PD (b) OSB-PD (c) NOSB-PD.

in which, a is the thermal expansion coefficient and T, is defined by:

vg

0 —6y) + (0" — 6
avg = 2

(22)

where, 6, represents the reference temperature, 6 and ¢’ indicate the temperature at
material points x and x’, respectively. Moreover, s, in Eq. (21), denotes the relative
elongation (stretch) of the bond, defined by [22]:

o = Ie+mll = I8l
&l

In ordinary state based peridynamics (OSB-PD) pairwise force states are not equal

(23)

(T[x', 1)(x — x) # —T[x,1](x — x')) although they are co-axial (see Figure 4b); in
non-ordinary state based peridynamics (NOSB-PD), pairwise force states are neither
equal nor co-axial (see Figure 4c). On the other hand, in BB-PD the interaction be-
tween two material points is totally independent of other bonds. Hence, the force
state that two points exert on each other are equal in magnitude but opposite in sign
(T[x', t(x’ — x) = —T[x,7]{(x — X’)) (see Figure 4a). Therefore, Eq. (14) can be sim-
plified for BB-PD and takes the following form:

p(X)(X, 1) = / f (ux’, 1) —u(x,1),x" —x) dV,s + b(x,1) (24)
H(x)

in which f is the pairwise force function of each bond, respectively.

In fact, in BB-PD the bond force only depends on two interacting material points
within a continuum; hence, this formulation is restricted to a fixed value of Poisson’s
ratio. This value for 3D and plane strain cases is v = 1/4 and for plane stress cases

is v. = 1/3. By using the prototype microelastic brittle (PMB) model [52], with a

15



230

constitutive law depicted in Figure 5, one may obtain the pairwise force function as:

!/ —
£ (0 —ux —x,1) = u(E Deyp@) (s — aTyy) ”ﬁz,’ 2 - ig‘( 2 oo

in which ¢, is the micro-modulus that can be interpreted as the bond stiffness. u(¢, )

is a history-dependent function which takes the value of 1 for active bonds and 0 for
broken bonds. w is known as the degree of interactions between points. Considering
the elastic deformation energy, one can define the mechanical micro-modulus in terms

of the Young’s modulus E and of the horizon radius ¢ as:

E
2 =,  Plane stress
mty 67
CME = LE%, Plane strain (26)
Snty, 6
12E
g 3D

Furthermore, it is possible to obtain critical stretch, s, in terms of the critical energy

release rate of the material, G, [52, 53]:

4nGy
1/ SEs Plane stress

572G .
Sn = 0 27
0 — 5. Plane strain 27

/3G,
5B 3D

A bond is considered broken and is removed from the following calculations when:

s—al,,, 2 59 28)

The damage level of point x at time 7 can be expressed by:
fH(X) ﬂ(és t)dI/x’

f H(x) dVy
In Eq. (29), ¢ indicates the ratio of the number of broken bonds to the total number

px, 0 =1- 29)

of bonds originally connected to point x and takes a value between 0 and 1. The case
¢ = 1 means that there is no interaction between the point and all surrounding points
within its horizon, while ¢p = 0 denotes an undamaged state.

Similar to the thermal part, by adopting the one-point Gauss quadrature rule to pro-

ceed with the spatial integration, one can discretize Eq. (24) as:

N
p(x,)i(x;, 1) = Z f (ux;,0) —u(x,1,x; = X;) fx; — x)V; + b(x;, 1) (30)

j=1

16
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Figure 5: Linear-failure constitutive law for a PMB material.

where f is the volume correction factor which determines the portion of V; that falls
within the horizon of source node x;. In this paper, § value is determined as suggested

in [54].

Remark 1. Rather than using the volume correction factor f, it is possible to calibrate
the influence function w(&€) in Eq. (25) to match the choice of m and the lattice configu-
ration. In fact, one may use m = 1 on a hexagonal lattice to obtain exact integration for

homogeneous deformation fields [55, 56]. This might be considered in future studies.

In the present study, the quasi-static solution is achieved by means of the dynamic
relaxation method introduced in [57]. As suggested in [58, 59], one may assemble the
equation of motion of each node, Eq. (30), into a global system of equations and thus

by introducing an artificial damping to the system, it can be concluded:
AUX, 1) + CAUX, 1) = F(U, U, X, X") (€2))]

where A is the fictitious diagonal density matrix and C represents the damping coef-
ficient; moreover, the positions vector, X and displacements vector U in Eq. (31) are
expressed by:

X = (X1,Xg, ..., Xps) (32)

U = (u(x;,1),u(Xy, 1), ..., u(Xp, 1)) (33)

17
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in which, M is the total number of nodes and F represents the summation of the external

and internal forces, which its i-th component is given by:

F. =

1

M
M=

f (u(x;, ) —u(x;,0.x; - x;) fX; — X))V, + b(x;,1) (34)
1

Lj
There are various ways to determine the density matrix, A. In this study, it is taken as
recommended in [59]. The values for damping ratio C is taken, 10® ~ 10’kg/(m?s), as
proposed by [58].

In the present study, time integration is performed by using the central difference
explicit integration. Given displacement and acceleration of each node x; at *, i.e. u’

1

and ﬁ;’, velocities and displacements at #"*! = " + At can be obtained by:

. n+1/2 (2 - CAtME) ll.1‘11_1/2 + ZAIMEA:IF?

(35)
! 2+ CAtyg
utl =ul 4 AZ‘MEI:I:H—I/Z (36)
At

Wt = gt ME el (37)

2 1

Hence, the solver can advance to the next time step by:
WP = W Aty + AR (38)

where Aty stands for the constant mechanical time step; likewise, to proceed in time

1/2

the velocity at ¢'/< is given by:

172 1 -
/! = 2 AtypAT'F (39)

As recommended in [59], for the mechanical part, the time step used for the dynamic

relaxation method is set to 1, i.e. Atz = 1; however, in thermo-mechanical coupling

the time step, At, should be less than both mechanical and thermal time steps as:

At < min {Atyp, Atry | (40)

18
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Figure 6: Adaptive refinement strategy.

3. Problem description

3.1. Coupling grids with different grid spacing

Using this technique, one is able to couple any two peridynamic grids with differ-
ent grid spacing. This technique is applicable to both mechanical and thermal parts.
To illustrate, a 1D problem domain, consisting of discretized parts with different grid
spacing, is depicted in Figure 7. To this end, the solution domain, €2, is divided into two
sub-domains Q* and Q™. Both sub-domains are simultaneously discretized by a coarse
grid spacing Ax* characterized by a horizon 6 and a fine grid spacing Ax~ < Ax*
characterized by a horizon 6. The nodes of the coarse grid in Q¥ are the (initial) real
nodes depicted by the green squares whereas those of the fine grid in Q™ are the (initial)
real nodes represented by the yellow circles (see Figure 7). The initial model is com-
pleted by the fictitious nodes. These fictitious nodes for the coarse and fine grid spacing
zones are represented by unfilled-dashed squares and circles respectively as shown in
Figure 7. Moreover, the red squares and circles shown in Figure 7, stand for the ac-
tivated fictitious nodes where the two sets of grids are coupled. In fact, the activated
fictitious nodes are used to make the real nodes located near the interface between the
parts, seem surrounded by a complete horizon (of their own type). The curved lines
demonstrate the peridynamic bond interactions. In Figure 7, m ratio is 2, i.e. each node

interacts with two nodes on each side. Although various m values and horizon sizes

19
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can be adopted in this model, for the sake of simplicity the horizon size is taken equal
to 6 = 2Ax. Fictitious nodes are activated on the boundaries of the two sub-domains
where the two grid spacing are supposed to be coupled. The distance, /,,, between the
two portions is considered to be smaller than both 6t and 6~. In this study, it is as-
sumed that the sub-domain Q~ grows only where it is essential (see Figure 6). In this
way, the algorithm is used in order to efficiently optimize the use of computational re-
sources. Hence, by using this method, the problem of surface effect in the interface
zone between parts with different grid spacing is solved.

The stiffness matrix of a bond between two generic nodes, X; and x 5 based on the

small deformation assumption, is given by:

CME, TH I

k = ﬂ(xj - x)ViV; (41)
1

lx; = x;| J

As for instance, node 3 (in Figure 7) represents a node interacting only with the real

nodes; the corresponding equations of equilibrium can be written by:

+ + + + o
—ayy kg — agpkl iy + (agy + agy + @y + ags) ki iy — aggklpuy — agskd us = F

(42)
—ayy k0 — @kt 0, + (a1 + agy + oy + ass) ki 03 — aggkt 04 — ayskl, 05 = hys,
in which:
B(x; — x;)
J i
@y = —— 3)
[x; — x;|

J
F; and h;) are the external force and heat source applied to node x;; in addition, k]t[E =

c;leVJr V*and kY, = ¢t VTV, However, for the nodes connected to active fictitious
iV TH — “TH'i 7 j
nodes, some non-standard terms appear in the equilibrium equations. For instance, the

equilibrium equations of node 4 are:

+ + + + + —
—agky, iy — agzky, us + (a42 + oy +ays + a46) Ky pta — Quskypus — ageky pug = Fy ad)
+ + + + + 9 =
—apkt, 0y — aykth 05 + (g + ay3 + ays + aye) kT, 04 — ayskt 05 — ayek, 06 = hyg

The displacement and temperature at node 6 (u4, fg), can be obtained by a linear inter-

polation between nodes e and f. Therefore, Eq. (44) takes the following form:

+ + + + + —

—opky puy — agzky, us + (a42 +ay3 +ays + a46) ki pia — Qusky pus — ageky o (ceue + cfu/-) =F,
+ + + + + —

—apki 0y — agskt 05 + (au + agy + aus + ayg) ki 04 — aysk, s — agekt, (c,0, +¢,0,) = hyyy

(45)

20
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in which, ¢, and ¢ 7 are the linear combination coefficients related to the values of the
geometric parameters of the two grids. Similarly, the equilibrium equations for node 5

take the following form:

— 53k iy — Asgkfy Uy + (as3 + asy + asg + as7) kb pts — asehy (cotte + cfuf) — as7k7 (cgug + cpuy) = Fs
—as3k}, 03 — asykt 04 + (as3 + asy + asg + as57) ki, 05 — asgkl, (c,0, + ¢ 0)) — asykhy, (c,0, +c,0,) = hys)
(46)

In an analogous way, for a node located in the fine grid zone and connected to the

activated fictitious nodes, for example node e, the equilibrium equations are given by:

—Qc Kyt — aedk;/[Eud + (aec t g+ o+ aeg) k;,Eue - aefk;/[Euf - “egkA_,]E“g =F,

= k00 = gk 04 + (U + Xog + @y + Xy ) Ky 00 — @1k 07 — ek, 0, = iy,

“4n

and it becomes:

—Ueckyp (c4u4 + csus) — Uogkyp (c5u5 + ceue) + (aec + Qg+t + aeg) kyptte — Qepkypity — apoky pu, = F,

— kg (cabs + ¢505) — apgkiyy (505 +¢,0,) + (@oe + Qg + Ay + apg) KOy — Xk 07 — @k 0, = hy)
(48)
where k;/IE = cA_/IEVi_Vj_ and k;H = C;HVi_Vj_.
To conserve the total mass of the system, it is essential to calculate the distance
between the parts of the model, [y, as follows [49]:
_ Axt 4+ Ax”

Iy = — (49)

For 2D and 3D cases, the same approach is applicable. As shown in Figure 8, the
square domain is discretized by two different grid spacing. In Figure 8, the fine and
coarse grids are disconnected and we use m = 2; although different values of m can be
considered. The grid spacing in the coarse and fine grids are represented by Ax~ and
Axt, respectively. Accordingly, the horizon sizes of the two parts are: 6t = 2Ax and
6~ = 2Ax~. In Figure 8, node A represents a real node of the fine grid which locates
near the coupling zone. This node should interact with all the real and the fictitious
nodes of its own type (nods of the fine grid) located in its horizon, 6~. The red circle
nodes are the activated fictitious nodes whose values should be determined by the linear

interpolation of the four real nearest family nodes surrounding them. Furthermore, node
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Figure 7: The coupling strategy in 1D problem.

B represents a real node of the coarse grid which locates near the coupling zone as
shown in Figure 8. It also interacts with the family nodes of its own type located in its
horizon. Red square nodes are the activated fictitious nodes whose displacements are
interpolated by the bi-linear interpolation of the four real nearest family nodes. After
finding the displacement of the fictitious activated nodes, one is able to calculate the
forces acting on the real nodes. It should be pointed out that the present scheme can

readily be extended to 3D problems.

3.2. Adaptive refinement

By means of the aforementioned coupling method, one may apply a fine grid in the
zones where cracks are prone to nucleate or propagate, while in the remaining parts
of the body a coarse grid is used. Moreover, it is very efficient to expand the fine
grid adaptively where large strain gradients are present. To achieve this, a switching
algorithm is required. The reader is referred to [49] for the details. The algorithm is
triggered when a bond stretch in coarse grid exceeds a critical value. It is designed such

that the crack tip never reaches the zones discretized by the coarse grid. Considering
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Figure 8: (a) Two still disconnected portions of a 2D model discretized by two different grid spacing, and (b)

introduction of fictitious nodes to connect the portions.
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two generic nodes in the coarse grid zone as X; and x;, one may write the stretch of the

bond linking them at the time, ¢, as follows (see Figure 9a):

”(xj + u;.’) - (x; +u)
sto= -1 (50)

1
s =

Nodes x; and x; are referred to as critical nodes when s;’j satisfies the following relation:

750 < s;’j —aTy,, <sp, 0<y<l1 (51

in which y is the switching factor. The higher values of y, the narrower zone of a coarse
grid is modified by the fine grid. In contrast, a larger zone of the coarse grid should be
transformed to a fine grid by using the smaller values of y. The domain discretization
after application of the switching algorithm is depicted in Figure 9b. Since displace-
ments, velocity and acceleration have to be assigned to the previously inactive nodes,

the values are interpolated from the surrounding nodes.

4. The step-by-step procedure of the method

1. Define the constant parameters:
e Mechanical constants: E, v, p, Atyg, 6, cyg, C.
e Thermal constants: c,, ¥, a, 6y, 0. Atry, 6, cry.

e Asrecommended in [59], for the mechanical part set Az, equal to 1. Fur-
thermore, in thermo-mechanical coupling At should be less than both me-

chanical and thermal time increments, A7 < min { Aty;z, Aty }
2. Pre-processing:

o Build the grid sets, define node type, horizon sets, mark the fictitious nodes,

define pre-cracks.
e Applying the mechanical and the thermal initial conditions.

3. Thermal analysis for step (n + 1) and evaluate, 8"*!, by Eq. (8).
4. Evaluate the displacements of the real nodes using the dynamic relaxation scheme

through Eqgs. (31)-(38).
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Figure 9: Variation of the model within two consecutive time steps

identifies two critical nodes of the coarse grid, (b) the coupled model after the refinement.
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Initialize the thermo-mechanical
problem

l

Solve the thermal problem with a
new fixed configuration

=1"+At

Solve the mechanical problem
with a constant temperature using
dynamic relaxation technique

Apply the adaptive refinement

Figure 10: Step by step procedure of the method.

5. Calculate displacement of the fictitious nodes, ulf""l , using linear or bi-linear in-
terpolation.

6. Calculate the stretch of the active bonds in the fine grid zone by Eq. (23).

7. Check if the stretch of the bonds exceeds its critical value, based on Eq. (28), the

bond should be broken and removed from the calculations.

8. Evaluate the damage level of the real nodes in the fine grid zone using Eq. (29).

9. Calculate the stretch of the active bonds in the coarse grid zone by Eq. (50).

10. Check if the stretch of the bonds in coarse grid is within the range defined in

Eq. (51), mark the node to be switched from coarse to fine.

11. Apply the refinement technique as described in section 3.2.

12. Save the updated displacements and temperature values as the initial values for

the next time step.

13. Repeat from step 3 for the next time step.

The whole solution procedure is visualized in the flowchart shown in Figure 10.
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5. Numerical Examples

To examine the performance of the present approach, a set of numerical exam-
ples are solved. To this end, an in-house C++ code is developed. The timings re-
ported (which excluds I/O times) are measured on an Intel Core i7-6700HQ 2.60 GHz
CPU, running 64 bit Windows 10 Enterprise. To compile the code, Microsoft Visual
C++ 2015 compiler is used, which lets us leverage the power of multi-core CPU using

OpenMP directives.

5.1. Example I: Thermo-mechanical analysis of a plate with a hole

In this example, deformation of a plate with a hole, due to non-uniform heating, is
investigated; no crack propagation is considered (see Figure 11). We determine the tem-
perature distribution over the domain and boundaries. Correspondingly, deformation is
evaluated by using the dynamic relaxation method. This benchmark has been investi-
gated in [60]. A plate with the dimensions of L X W is considered here. The problem
is solved in a plane stress condition with L = 0.15 m, W = 0.05 m, E = 200 X 10° Pa,
a =16x107°K"!, p = 7850kg/m? and v = 1/3. The plate has a thermal con-
ductivity y = 20 W/mK, and specific heat ¢, = 500J/kgK. The initial temperature
of the plate is 20 °C. The right and left boundaries are subjected to constant tempera-
tures as: 0*(x = —L/2,y,t) = 500°C and 8*(x = L/2,y,t) = 20°C. The remaining
boundaries are insulated. Moreover, m = 3 is used to solve this example.

To impose the mechanical boundary conditions, the left and the right sides of the
plate are subjected to zero displacement constraints as: u(x = —L/2,y,t) = 0, u(x =
L/2,y,t) = 0, whereas other boundaries are free of tractions. This example is solved
for a duration of ¢+ = 1000s with the time integration interval of At = 0.01 s, which
results in 100000 steps.

The plate is discretized in three different ways: Uniform, Non-uniform I and Non-
uniform II. In the Uniform model the grid spacing is Ax = Ay = 5 x 10~*m. Non-
uniform I is a coupled model with Ax* = 107> mand Ax~ = 5x 10~* m. Additionally,
Non-uniform IT is a coupled model with Ax* = 1073 m and Ax~ = 0.25x 10~*m. The

fine parts are shown in Figure 11 by Q™. The fine parts are chosen randomly without any
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symmetry axis. The fine grid zones in Figure 11 are neither parallel nor perpendicular
to the plate sides. To obtain the converged solution, initially this model is simulated
with the Uniform grid model. Finding the proper value of Ax, we compare the con-
tour plots of the temperature and horizontal displacement in Figures 12-13. The results
of the Non-uniform I and Non-uniform I model are in an excellent agreement with
the Uniform one. Moreover, the plate is simulated in Abaqus 6.13 by the finite element
method (FEM). Then, the temperature profile and displacements contour plots are com-
pared with the BB-PD results. The comparison indicates a remarkable agreement. We

define a relative displacement and temperature error as:

|u - uref
e, = —— %X 100 (52)
uref
and
‘9 ~ Orer
g = ———1 x 100 (53)
Href

in which, 6,,; and u,,; stand for the temperature and displacement (along x or y axis)
of the reference solution (FEM). Then, the relative temperature and displacement (along
x direction) error contour plots for the Non-uniform II are depicted in Figure 14. The
maximum relative error for the displacement along x direction, e,, and the maximum
relative error of the temperature, ep, are not more than 4.5% and 2% respectively (see
Figure 14). This inevitable error, which is due to the surface effects of the peridynamic
approach, occurs near the boundaries of the domain.

For further validation of the present method, two nodes, x4, = (0.035,0.005) and
xp = (0.04,0.0085) are chosen to investigate the time history of the horizontal displace-
ment and temperature in all three models. The time history of the horizontal displace-
ment for nodes Xz and x4 are shown in Figure 15a and Figure 15b, respectively. The
results for both of the nodes are in an acceptable agreement; however, better agreement
of the three models can be observed for node B. Moreover, the time history of the tem-
perature for nodes x and x4 are depicted in Figure 15¢ and Figure 15d, respectively.
The results are in an excellent agreement and no significant numerical perturbation can

be observed.
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Figure 11: Problem domain, boundary conditions, and the zones with fine grid in Example 1.

5.2. Example II: Pre-cracked disk specimen under central thermal shock

In this example, we investigate the thermo-mechanical crack propagation in a pre-
cracked disk using the adaptive multi-grid peridynamic method. This example has al-
ready been used as an experimental test to measure the thermal-shock resistance of
different materials such as ceramics [4, 5, 61]. In this test, the center of a disk is heated
at its both sides over a circular area as depicted in Figure 16. Due to the central constant
heat flux and the existence of the pre-crack, the inhomogeneous temperature distribution
occurs over the disk which leads to the inhomogeneous thermal expansion and stress
in the domain. The thermal shock fracture takes place when the emerged tensile stress
reaches a certain value.

Based on the experiments conducted in [4, 5, 61], three different crack paths are
observed in Figure 17. The first type of the crack path is a straight line from the pre-
crack to the opposite side of the disk as depicted in Figure 17(a). The second type of the
crack path begins from the pre-notched crack tip propagates into two branches inside
the heating area as shown in Figure 17(b). The third type of the crack path resembles
the second one; however, the crack branches outside of the heating area as depicted in
Figure 17(c). This example also has been solved using phase filed numerical solution
in [19] and all three types of crack paths have been observed.

As shown in Figure 16, the radius of the disk and the pre-notched crack size are

chosen as: R = 0.015m and a = 0.002m. Regarding the data available in literature
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Figure 12: Temperature (T'[°C]) after 1000 s: (a) Non-uniform I PD (b) Non-uniform II PD (c¢) Uniform PD
and (d) FEM models.
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(d)

Figure 13: Displacement (u, [m]) after 1000s: (a) Non-uniform I PD (b) Non-uniform II PD(c) Uniform PD
and (d) FEM models.
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Figure 14: (a) Relative displacement error (e,) in x direction (b) relative temperature error (e,) for Non-

uniform II PD.
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Figure 16: Geometry and boundary conditions for the thermal shock fracture problem in a disk. The red area

denotes an imposed body heat flux.
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Figure 17: Three types of crack paths in experiments from [4, 5]; (a) crack grows straightly through the

heating area (b) crack branches in the heating area (c) crack branches outside of the heating area.

[5], the problem is solved in a plane stress condition with E = 380 X 10°Pa, a =
6.6 x 107°K~!, p = 3900kg/m3, G, = 26.95J/m? and v = 1/3. The plate has a
thermal conductivity y = 21 W/mK, and specific heat ¢, = 961.5J /kgK. An adiabatic
boundary condition is imposed around the disk. The value of the central heat flux in
Eq. (8) is o, = y kW/m?, the radius of the heating area is r as depicted in Figure 16.
Furthermore, m = 3 is used to solve this example.

A uniform peridynamic model with a grid spacing of Ax = 0.0003 m is taken as the
reference solution. The adaptive refinement solution is considered by using a refined
model (Ax~ = 0.0003 m and Ax* = 0.0006 m). This example is solved for a duration
of t = 0.059 s with a time step of At = 107> s, which results in 59000 steps. The radius
of the heating part and the heat flux for this example are taken as: y = 750000 kW /m>
and r = Smm.

The contour plots of damage obtained by the proposed method and the uniform
model at 6 different instants are depicted in Figure 18. Also, the temperature distribution
of the uniform and the adaptive model is shown in Figure 19. A very good agreement
in both cases is achieved. In Table 1, the runtime of each simulation with the number
of real nodes reported.

To compare the proposed method with the phase field model introduced in [19],
we perform a new simulation with a set of parameters shown in Figures 21d-21f. In
all three cases, the obtained crack path by the present solution conforms to that of the

phase field solution and the experimental results in Figure 17.
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(a)t=10.585s (b)t=0.585s

(c)t=0.587s (d)t=0.587s

(©)1=059s H1=059s

Figure 18: Example II. Damage (¢) at different time instances (a), (c) and (e) in the adaptive model (b), (d)

and (f) in the uniform model (damage only related to the fine grid).
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Table 1: Comparison of the computational resources used by uniform and adaptive models in Example II.

Number of real nodes

Adaptive

Uniform Coarse Fine

t=0s 3741 343
7825 -
t=059s 1833 2996
Runtime 521.60s 175.31s

(2) (b)

Figure 19: Example II: Temperature T'[°C] after 0.59 s: (a) the adaptive model (b) the uniform model.
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Figure 20: Example II: the vertical displacement (u , [m]) after 0.59 s in (a) the adaptive model (b) the uniform

model and the horizontal displacement (u, [m]) after 0.59 s in (c) the adaptive model (d) the uniform model.
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Figure 21: (a)-(c) Crack path (¢) in the phase field model [19] (d)-(e) the adaptive peridynamic model when
the disk is broken completely.
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5.3. Example I1I: Quenching test of rectangular specimen under central thermal shock

In this example, complex crack patterns induced by thermal shocks using the adap-
tive peridynamic model is investigated. The quenching test is a benchmark to measure
the thermal shock resistance of different kinds of materials. In the experiments done by
[3], rectangular ceramic slabs are heated to a certain temperature and then dropped into
a water bath. Accordingly, some parallel cracks start to grow from the lateral surface
of the slab due to the quenching phenomenon. The slabs with a higher initial temper-
ature show extreme shrinkage and hence, more cracks with longer depth emerge on
the boundaries of the slabs. For the first time, a method based on energy minimiza-
tion has been established to calculate the periodic array and selective crack growth by
[62]. Furthermore, other numerical simulation of this experiment can be traced in the
literature (see for example [18, 19, 38, 40, 63, 64]); however, due to the complexity
of the crack patterns, a large number of elements or nodes is needed which increases
the computational cost drastically. Hence, we consider two models for this example;
one uniform model with a fine grid spacing (Ax = 0.00014 m), and an adaptive model
(Ax~ = 0.00014 m and Ax* = 0.00028 m). Then, the accuracy of the adaptive model
is investigated by comparing these two models with the experiment data.

The rectangular slab has the length of L = 0.05m and width of W = 0.01 m as
shown in Figure 22. Based on the experimental model in [3], the problem is solved in
a plane strain condition with E = 340 X 10° Pa, a = 7.2x 1079 K~!, p = 3950 kg/m?>,
G, = 42.27]/m? and v = 1/4. The plate has a thermal conductivity y = 18 W/mK,
and specific heat ¢, = 880J/kgK. The convection boundary condition is imposed to
the sides of the plate as depicted in Figure 22. This example is solved for a duration of
t = 1s with a time step of Az = 107 s, which results in 100000 steps. Furthermore,
m = 3 is used to solve this example. The initial temperature is taken as 6, = 680K,
while the temperature of the surfaces contacted with water is 6, = 300 K.

The contour plots of the damage obtained by the adaptive model and the uniform
model at # = 1 s are represented in Figure 23. Qualitatively, an acceptable agreement is
obtained between the crack paths of the models. Moreover, the experimental results of
[3], depicted in Figure 23, are in a very good agreement with both peridynamic models.

In order to compare the crack paths quantitatively, one may analyze the crack fre-
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Figure 22: Example III: Numerical model of the ceramic specimen subjected to 2D heat transfer.

(b)

Figure 23: Example III: Damage (¢) after 1.00s: (a) the adaptive model (b) the uniform model (damage only
related to the fine grid).
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Figure 24: Experimental results of quenching test by [3].

quency chart as shown in Figure 25. For this analysis only the cracks whose length
is greater than 10% of the plate half-width are considered. In the study by [38], this
example has been solved by an OSB-PD model and the results have been compared to
the experimental results. In the results reported in [38], the number of total cracks with
the length of 0.05 — 0.45 mm is 52 while it is 56 in the experiment. In this study, 55 and
57 cracks have been obtained using the adaptive model and the uniform model, respec-
tively. The obtained results reveal that the present method performs well and exhibits
solutions in a good agreement with those obtained in the experiment. Analyzing Fig-
ure 25, one can conclude that the crack frequency trend line (dotted line) in the adaptive
refined model is much more in agreement with the experimental data compared with
other referred models.

Additionally, in Table 2, the runtime of each simulation and the number of real
nodes are reported. Consequently, the proposed adaptive technique not only reduces the
total run time of the code but also conforms well to the experimental data. Moreover,
temperature field at # = 1s and its comparison to the adaptive model are represented
in Figure 26. Very good agreement between the uniform and the adaptive model is

achieved.
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Figure 25: Example III: Crack frequency diagram and interpolation of the results.

Table 2: Comparison of the computational resources used by uniform and refined models in Example III.

Number of real nodes

Adaptive

Uniform  Coarse Fine

t=0s 6336 0
24921
t=10s 1799 17000
Run time 2016.31s 817.60's
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(2)

(b)

Figure 26: Example III: Temperature (7T'[°C]) after 1.00s: (a) the adaptive model (b) the uniform model.

5.4. Example IV: Quenching test of circular ceramic specimen under central thermal

shock

For further validation of the proposed numerical solution, the thermal shock in a
circular ceramic plate is investigated. In the experiments done by [6], thin circular
ceramic plates are heated to the certain temperature and then dropped into a water bath.
These thin plates are stacked together by two thick circular plates on the outside to set the
adiabatic condition at the interior surfaces of the thin circular specimens. The circular
slab has the radius R = 0.065 m as shown in Figure 27. Based on the experimental
results in [6], the problem is solved in a plane stress condition with E = 370 x 10° Pa,
p =3980kg/m?, G, = 12.16J/m? and v = 1/3. Furthermore, m = 3 is used to solve
this example. The convection boundary condition is imposed around the layer of the
plate with the thickness of § as represented in Figure 27. The plate has a temperature-
dependent thermal conductivity, specific heat and thermal expansion [65] as shown in
Figure 28.

The material of the thin circular ceramic specimens is 99% Al,O5. The initial tem-
perature is taken as 6, = 250 °C while the temperature of the surfaces contacted with
water is 8., = 15°C. This example is solved for a duration of = 0.45s with a time

step of At = 107> s, which results in 45000 steps.
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(a) (b)

Figure 27: Geometrical and loading conditions in example I'V: (a) schematic diagram [6] and (b) the numerical

model [65].

The contour plots of damage obtained by the proposed adaptive model and the uni-
form model at ¢+ = 0.45s are presented in Figure 29. The numerical results illustrate
that complex multiple crack paths are initiated from the edge of the circular ceramic
specimen and propagate towards the center. Acceptable qualitative and quantitative
agreement is obtained between the crack paths of both numerical models and the ex-
perimental data. Moreover, the number of total cracks in both simulations as well as
the experimental results is 15. Also, the number of long cracks, which their length is
more than 50% of the radius of the specimen, is equal to 4 in all models. Additionally,
in Table 3, the runtime of each simulation and the number of real nodes are reported.
In this example also the total runtime of the simulation is significantly reduced by using
the proposed adaptive technique.

Finally, the contour plot of temperature for the adaptive and the uniform models
are compared in Figures 30. The comparisons suggest a proper agreement between the

models.

6. Conclusions

This paper presents an effective way to use a variable grid size in a weakly coupled
thermo-mechanical peridynamic model. The proposed numerical method is equipped

with a stretch control criterion to transform the grid discretization adaptively. Hence,
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Figure 28: The temperature-dependent thermal properties of thermal expansion, (b) the thermal conductivity,

7, and the specific heat capacity, ¢, in 99% Al,O5 ceramics versus temperature [65].
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Figure 29: Example III: Damage (¢) after 0.45 s: (a) the uniform model (b) the adaptive model (damage only
related to the fine grid) (c) experimental model by [6].
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Table 3: Comparison of the computational resources used by the uniform model and the adaptive model in

Example I'V.

Number of real nodes

Adaptive

Uniform Coarse  Fine

t=0s 4281 0
17181
t=045s 1504 10904
Run time  706.04 s 226.34 s

(a) (b)

Figure 30: Example IV: Temperature (T °C) predictions after 0.45 s: (a) the adaptive model (b) the uniform

model.
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the fine grid spacing is only used in limited zones where it is required. This method is
capable of predicting complex crack patterns without any a priori hypothesis on crack
onset and geometry. By introducing a fine grid discretization over the boundaries of
the model, the surface (softening) effect can be reduced significantly. The accuracy and
overall performance of the model are examined through problems such as thermo-elastic
and thermal-shock induced fracture in ceramics. Results are compared qualitatively
and quantitatively to the experimental data, and to numerical solutions produced by
standard peridynamic models with uniform grid size and FEM. A remarkable agreement
is observed between all sets of results. The new computational method is capable of
producing the results of a standard peridynamic model with uniform discretization at a

smaller computational cost.
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