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Abstract

This paper deals with the analysis of homogenization assumptions within
phase field theories in a finite strain setting. Such homogenization assump-
tions define the average bulk’s energy within the diffusive interface region
where more than one phase co-exist. From a physical point of view, a cor-
rect computation of these energies is essential, since they define the driving
force of material interfaces between different phases. The three homogeniza-
tion assumptions considered in this paper are: (a) Voigt/Taylor model, (b)
Reuss/Sachs model, (c) Khachaturyan model. It is shown that these assump-
tions indeed share some similarities and sometimes lead to the same results.
However, they are not equivalent. Only two of them allow the computation
of the individual energies of the co-existing phases even within the afore-
mentioned diffusive interface region: the Voigt/Taylor and the Reuss/Sachs
model. Such a localization of the averaged energy is important in order to
determine and to subsequently interpret the driving force at the interface.
Since the Voigt/Taylor and the Reuss/Sachs model are known to be rela-
tively restrictive in terms of kinematics (Voigt/Taylor) and linear momen-
tum (Reuss/Sachs), a novel homogenization approach is advocated. Within
a variational setting based on (incremental) energy minimization, the re-
sults predicted by the novel approach are bounded by those corresponding
to the Voigt/Taylor and the Reuss/Sachs model. The new approach fulfills
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equilibrium at material interfaces (continuity of the stress vector) and it is
kinematically compatible. In sharp contrast to existing approaches, it nat-
urally defines the mismatch energy at incoherent material interfaces. From
a mathematical point of view, it can be interpreted as a partial rank-one
convexification.

Keywords: Thermodynamics, Variational principles, Energy minimization

1. Introduction

Phase field models have become an indispensable tool in materials science
and physics in order to analyze the evolution of complex microstructures, cf.
[1] and the more recent review [2]. Such microstructures are the source of
many interesting and important phenomena defining the properties of mate-
rials. Typical examples are TRIP steels (TRansformation Induced Plasticity)
and TWIP steels (TWinning Induced Plasticity). These materials are known
to have a high strength (TRIP) and a high ductility (TWIP) due to trans-
formations of the microstructure. Within a viewpoint of materials science or
metal physics, phase field models go back, at least, to the pioneering work
of Cahn & Hilliard, cf. [3] and that of Allen & Cahn [4]. Focusing on the
latter, the essential idea is to assign an order parameter to each phase which
is similar to the mathematical indicator function. In line with the standard
definition of the indicator function, the sum of all order parameters has to be
equal to one at any point (partition of unity). However, and in contrast to
the classical indicator function being either zero or one, the order parameters
can also attain values in-between. Such points are associated with interfaces
that separate different phases from each other. Physically speaking, a mate-
rial point can therefore be related to more than one phase, i.e., phase field
theory can be understood as a certain mixture theory.

Although phase field models have their roots in materials science, they
can also be interpreted from a purely mathematical point of view, whereby
phase field models represent sufficiently smooth approximations of the un-
derlying sharp interface problems, i.e., the sharp transition from one phase
to another phase is regularized by a smooth function showing a high gra-
dient. In the limiting case, this smooth function converges to the indicator
function, cf. [5]. An important advantage of phase field models compared
to sharp interface representations is that tracking of material interfaces is
not required. This tracking is a common numerical problem for most free
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boundary value problems.
Clearly, the idea to approximate a sharp interface in a smeared fashion

can also be found in other types of models. A probably well known example
is gradient-enhanced damage theory. By assigning two different order pa-
rameters to the virgin material and to the fully damaged state (the crack),
such models fall into the range of phase field approaches. More details on
the connection between phase field models and gradient-extended continua
are discussed in [6, 7].

Although phase field models have nowadays indeed reached a certain ma-
turity, some fundamental problems remain to be solved. A currently active
research subject is the interaction of plasticity and material interfaces. To be
more precise, it is not clear how a dislocation is affected by a phase boundary.
For instance, a dislocation could simply be pushed away by a phase boundary
such that the transformed domain would initially be dislocation free. The
other limiting case would be that a dislocation can easily pass through phase
boundaries and thus, the transformed phase inherits the dislocations of the
original phase. Problems of this type are considered in [8, 9, 10]. Unfor-
tunately, only little experimental information on this account seems to be
available, cf. [11]. For this reason, the predictive capabilities of the models
cannot currently be checked.

While the aforementioned problem, i.e., the interaction between plasticity
and phase boundaries, is already relatively complex, a significantly simpler,
yet unanswered and probably more fundamental problem is considered in
this paper. It is related to the averaging of the bulk’s energy within do-
mains where more than one phase exists. That is, this paper deals with
the underlying homogenization assumptions in phase field theory. Accord-
ing to the authors’ knowledge, the only published paper dealing with this
subject is [12]. Within the cited work, the authors analyzed three different
homogenization assumptions within a geometrically linearized setting: (a)
Voigt/Taylor model, (b) Reuss/Sachs model and (c) Khachaturyan model,
cf. [1]. They show that the Khachaturyan model, although frequently ap-
plied in the phase field community, is strictly speaking not a homogenization
method, since the bulk’s average energy is not the average of the energies
of the involved phases. Furthermore, the energies of the involved phases are
not well-defined in the diffusive interface region where the phases co-exist.
However, this localization property is indeed important, since the difference
in energy between phases represents a driving force that moves the inter-
face. With respect to the classical Voigt/Taylor and Reuss/Sachs model, the
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authors of the paper [12] demonstrated that the Reuss/Sachs model under-
estimates the influence of mechanics on diffusion. By way of contrast, the
Voigt/Taylor model was found to provide a more realistic prediction on the
coupled response, similarly to the non-classical homogenization approach by
Khachaturyan, cf. [1].

As implicitly mentioned in the previous paragraph, phase field models
can be subdivided into two different classes with respect to the underlying
homogenization assumptions. Within the first of those classes, an effective
bulk’s energy is a priori postulated. cf. [1]. This effective energy depends
on the concentration and/or on the order parameters. By way of contrast,
an individual constitutive model is separately defined for each phase within
the second class and, subsequently, the average bulk’s energy is computed by
homogenization theory. Models falling within this range can be found in [12]
and references cited therein. Clearly, these two classes are not disjunctive.
However, they are not equivalent either. To be more precise, every model
belonging to the second class (models based on homogenization theory) also
falls into the first class (since an average energy can be derived). However,
the opposite is not true, i.e., the localization condition is not always fulfilled.
Another disadvantage of models within the first class is that the definition of
an effective energy is not always obvious - particularly if the involved phases
show completely different material behavior. The focus of the present paper
therefore relies on the second group of phase field models.

The classical homogenization assumptions considered so far in phase field
theory are the Voigt/Taylor model and the Reuss/Sachs model, cf. [12].
However, as shown in several classical textbooks on homogenization theory
(see, e.g. [13, 14]) both of them are known to represent limiting cases, i.e., by
adopting a variational setting based on (incremental) energy minimization
the Voigt/Taylor model leads to an upper bound whereas the Reuss/Sachs
model leads to a lower bound. In this paper, a more realistic homogenization
assumption is elaborated. It is closely related to the framework of rank-
one convexification, cf. [15, 16, 17, 18, 9]. This framework has already
been successfully applied to the analysis of evolving microstructures at the
macroscale. The averaged energy predicted by this framework is bounded
by the Voigt/Taylor model and the Reuss/Sachs model. Furthermore, this
approach fulfills equilibrium at material interfaces (continuity of the stress
vector) and it is kinematically compatible. In the present paper, this frame-
work is adapted to phase field theory. It will be shown that the resulting
framework leads to better predictions and in sharp contrast to existing ap-
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proaches, it naturally defines the mismatch energy at incoherent material
interfaces (at incoherent interfaces, the Cauchy-Hadamard condition is not
fulfilled for the Bain deformation gradients).

The paper is organized as follows: Section 2 is concerned with the fun-
damentals of phase field theory. The focus lies on an Allen-Cahn-type ap-
proach combined with a three-dimensional finite strain mechanical model
based on a variationally consistent formulation (incremental energy mini-
mization). For the resulting family of prototype models, different homog-
enization assumptions are presented in Section 3: (a) Voigt/Taylor model,
(b) Reuss/Sachs model, (c) Khachaturyan model, (d) a novel model based
on partial rank-one convexification. A comparison between these models for
a simple one-dimensional setting is given in Section 4, while a more realistic
three-dimensional problem is numerically analyzed in Section 5.

2. Phase field theory in a nutshell

2.1. Sufficiently smooth approximation of sharp interfaces

In the following, a body Ω (undeformed configuration) consisting of two
phases is considered. Such phases occupy the domains Ω1 and Ω2 such that
Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅. By introducing the indicator functions of
these sets according to

i1(X) =

{
1 if X ∈ Ω̄1

0 if X ∈ Ω2

}
, i2(X) =

{
0 if X ∈ Ω̄1

1 if X ∈ Ω2

}
(1)

a phase is assigned to every point X ∈ Ω. Clearly, the indicator functions
define a partition of unity, i.e., i1 + i2 = 1 ∀X ∈ Ω. Consequently, only one
of the indicator functions is independent. In what follows and without loss of
generality, i2 is chosen as independent and i1 = 1−i2. Since the partition and
the respective interface between the different phases are usually not known
in advance but governed by the underlying physics, problems of this type are
also referred to as free boundary value problems.

According to the work [5], the aforementioned sharp interface problem
(both indicator functions are discontinuous) can be approximated in the sense
of gamma convergence (see [19]) by means of the by now classical Modica-
Mortola energy (see Remark 1). In the one-dimensional setting, this energy
reads

f ε[p] :=

∫ ∞
−∞

{
3

2
ε |∂Xp|2 + 6

1

ε
p2 (1− p)2

}
dX . (2)
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and a straightforward computation shows that the minimizer of this func-
tional is (for the suitable boundary conditions limX→−∞ p

ε = 0 and limX→∞ p
ε =

1)
pε(X) = 1/2 (tanh[X/ε] + 1) = arg min f ε[p]. (3)

Evidently, the function pε which is also referred to as order-parameter repre-
sents the aforementioned smooth approximation of the sharp interface prob-
lem, if the interface is at the origin, i.e.,

lim
ε→0

pε(X) = i2(X) =

{
1 ∀X > 0
0 ∀X ≤ 0

(4)

The degree of relaxation is controlled by the parameter ε > 0. Mathemat-
ically speaking, functional (2) is a smooth approximation of the Hausdorff
measure. Particularly,

f ε[pε(X) = 1/2 (tanh[X/ε] + 1)] = 1 (5)

and the minimum of the functional is equivalent to the number of interfaces
(points) between different phases, cf. [5].

The previously described approximation of the one-dimensional problem
can be directly generalized to the three-dimensional setting, i.e.,

f ε[p] :=

∫
Ω

{
3

2
ε |∇p|2 + 6

1

ε
p2 (1− p)2

}
dV, ∇p := ∂Xp. (6)

In the three-dimensional case, the minimizer of the functional converges to
the total area of all interfaces between the phases (mathematically speaking,
the two-dimensional Hausdorff measure; the interested reader is referred to
[5] for further details). Assuming a volume-specific interface energy ψi, the
total energy of all interfaces is thus given by

IεΓ[p] :=

∫
Ω

ψi

{
3

2
ε |GRADp|2 + 6

1

ε
p2 (1− p)2

}
︸ ︷︷ ︸

=: Ψε
Γ

dV (7)

and the postulate of minimum potential energy (for conservative systems)
governing the geometry of the interfaces is given by

min IεΓ[p]. (8)

6



Remark 1. The original Modica-Mortola energy is

f ε[p] :=
1

2

∫ ∞
−∞

{
ε |∂Xu|2 +

1

ε
W (u)

}
dX (9)

in which the double-well functional W is usually chosen as

W (u) = (1− u2)2. (10)

The minimizer of f ε is (for the suitable boundary conditions limX→−∞ u
ε =

−1 and limX→∞ u
ε = 1)

uε(X) = tanh(X/ε) (11)

which leads to
f ε[uε = tanh(X/ε)] = 4/3. (12)

Starting from this, by now classic, result, Eq. (2) is obtained by rescaling

pε(X) = 1/2 (uε(X) + 1) (13)

and by multiplying Eq. (9) by the factor 3/4 (scaling).

2.2. Constitutive modeling of the bulk material

In this paper, an individual constitutive model for each phase involved is
chosen and, subsequently, the effective energy of the mixture is derived by
homogenization methods explained later. Thus, the chosen framework is in
line with the works [12, 2]. To neither overload the paper nor to distract the
reader, an Allen-Cahn-type model is considered and the effect of a varying
concentration is ignored and temperature effects are excluded. However,
both aforementioned effects could be included in the presented framework
in a relatively straightforward manner. Even with these restrictions, the
discussed family of constitutive models and the resulting range of applications
are still very broad. To be more explicit, a three-dimensional finite strain
setting based on a variationally consistent formulation (incremental energy
minimization) represents the starting point. The interested reader is referred
to [15, 17, 16, 9] for further details. This variational formulation encompasses,
as special case, hyperelasticity and so-called standard dissipative materials in
the sense of Halphen and Nguyen, cf. [20].

Following standard notation in continuum mechanics, a point X ∈ Ω
of the reference configuration is mapped to the deformed configuration x ∈
ϕ(Ω) by means of the deformation mapping ϕ. Locally, this mapping can be
approximated by the deformation gradient F := GRADϕ := ∇ϕ := ∂Xϕ.
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2.2.1. Hyperelasticity

Based on the deformation gradient, standard (local) hyperelastic mate-
rials are defined by means of a Helmholtz energy of the type ΨB = ΨB(F ).
Clearly, in order to fulfill the principle of frame indifference, the Helmholtz
energy can be re-written as ΨB = ΨB(C) with C = F T · F denoting the
right Cauchy-Green tensor. Application of the standard Coleman & Noll
procedure [21] leads to the first Piola-Kirchhoff stress tensor

P = ∂FΨB = 2 F T · ∂CΨB. (14)

Assuming that the whole boundary value problem is conservative, the un-
known deformation mapping follows from the postulate of minimum potential
energy, i.e.,

ϕ = arg inf IB(ϕ). (15)

In the case of dead body loads (ρ0 b) and deformation-independent prescribed
tractions T̄ at the Neumann boundary ∂NΩ, the functional to be minimized
reads

IB(ϕ) :=

∫
Ω

ΨB(∇ϕ) dV −
∫
Ω

ρ0 b ·ϕ dV −
∫

∂NΩ

T̄ ·ϕ dA (16)

Evidently, the deformation mapping has to fulfill the Dirichlet boundary
conditions.

2.2.2. Standard dissipative materials - Incremental energy minimization

In the case of materials also showing dissipation, the Helmholtz energy
does not depend solely on the deformation gradient at the considered time.
One possibility to account for the path-dependence characteristic of materi-
als with dissipation is the introduction of internal variables α (strain-like),
such as the plastic strains. Consequently, materials of this type can be char-
acterized by a Helmholtz energy

ΨB = ΨB(F ,α) (17)

and the stresses resulting from the Coleman & Noll procedure are given by

P = ∂FΨB. (18)

In analogy to Eq. (18), stress-like internal variables can be defined as

Q := −∂αΨB (19)
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and the reduced dissipation inequality yields (for isothermal processes)

DB = Q ∗ α̇ ≥ 0. (20)

Here, ∗ is a generalized scalar product.
The only equations that remain to be specified are the evolution equations

of the type α̇ = f . They have to fulfill, in particular, the second law of
thermodynamics, i.e., Ineq. (20). Focusing on standard dissipative materials
in the sense of Halphen and Nguyen [20], such equations are derived from a
dissipation functional DB = DB(α̇). To be more precise,

Q ∈ ∂DB (21)

where ∂DB is the subdifferential of DB. If the functional DB is convex, non-
negative and D(0) = 0, the second law of thermodynamics is automatically
fulfilled. In the case of rate-independent constitutive models, DB has to be
positively homogeneous of degree one in α̇ and the dissipation functional
then equals the physical dissipation, i.e., DB = DB. An illustrative example
of such a constitutive model is given in Remark 2.

Eq. (21) is equivalent to the minimization problem

inf
α̇

{
Ψ̇B + DB

}
. (22)

Consequently, the consideration of a suitable time discretization of the time
interval [tn; tn+1], such as the implicit first-order integration,

IB(F n+1,αn+1) := ΨBn+1 −ΨBn + ∆t DB

(
αn+1 −αn

∆t

)
(23)

yields the canonical update of the internal variables at time tn+1

αn+1 = arg inf IB(F n+1,αn+1)|Fn+1
(24)

together with the reduced incremental potential

Ired
B (F n+1) = inf IB(F n+1,αn+1)|Fn+1

. (25)

This reduced potential, in turn, serves as a pseudo-hyperelastic functional
defining the stresses, i.e.,

P n+1 = ∂Fn+1Ired
B (26)
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and, in analogy to standard hyperelasticity, the deformation mapping can be
computed from the minimization problem (compare to Eq. (15) and Eq. (16))

ϕn+1 = arg inf IB(ϕn+1). (27)

where

IB(ϕn+1) =

∫
Ω

Ired
B (∇ϕn+1) dV −

∫
Ω

ρ0 b ·ϕn+1 dV −
∫

∂NΩ

T̄ ·ϕn+1 dA. (28)

Remark 2. In the case of a von Mises plasticity model based on the multi-
plicative decomposition of the deformation gradient into an elastic part F e

and a plastic part F p, the evolution equation (flow rule) is of the type

Ḟ
p · F p−1 =: Lp, with trLp = 0. (29)

Introducing a threshold Q0 > 0 (the yield stress), a reasonable choice for the
dissipational functional for this rate-independent model is thus

DB = Q0 ||DEVLp|| ≥ 0 (30)

where DEVLp is the deviator of Lp.

2.3. A variationally consistent phase field approach

Since hyperelastic models are included in the more general class of stan-
dard dissipative materials, each phase is assumed to be governed by a min-
imization problem of the type (27) with the energy (28). For the sake of
brevity, body loads (ρ0 b) and prescribed tractions (T̄ ) will not be consid-
ered in what follows.

Combining the minimization problem (27) governing the bulk material
with the minimization problem associated with the interface between the
phases (see Eq. (8)) leads to the unified problem

(ϕ, p) = arg inf I(ϕ, p). (31)

where

I(ϕ, p) =

∫
Ω

Īred
B (∇ϕ, p) dV +

∫
Ω

Ψε
Γ[p] dV. (32)
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While the second term in Eq. (32) has already been explained in detail in
Subsection 2.1, the (incremental) energy Īred

B remains to be defined. In do-
mains where only one phase exists, the energy Īred

B is identical to the energy
Ired
B at the respective point. By way of contrast, in domains where both

phases co-exist, this energy represents a suitable mixture of both energies
(homogenization). The definition of a physically sound homogenization as-
sumption for this energy is the key aspect of this paper. It will be dealt with
in the next section.

In addition to a proper definition of Īred
B , another point has to be ad-

dressed: the dissipation associated with a propagating phase boundary. For
that purpose, the variational derivative of the stored energy with respect to
the order parameter p (the driving force) is usually related to the rate of the
order parameter, cf. [2]. To be more precise, the simplest constitutive model

δp
{
Īred
B + Ψε

Γ

}
= −ṗ η (33)

is usually adopted where the variational derivative, which is the driving force
from a physical point of view, shows the form

δp
{
Īred
B (F , p) + Ψε

Γ(p,∇p)
}

= ∂p
{
Īred
B + Ψε

Γ

}
−DIV[∂∇pΨ

ε
Γ]. (34)

In Eq. (33), η is a (constant) model parameter which can be interpreted as a
viscosity or mobility of the interface. Evidently, constitutive model (33) can
be re-written as

δp
{
Īred
B + Ψε

Γ + DΓ

}
= 0 (35)

with the interface-related dissipation functional (of Ginzburg-Landau-type)

DΓ = DΓ(ṗ) =
1

2
η ṗ2. (36)

Since this functional is non-negative and convex and DΓ(0) = 0, the second
law of thermodynamics is automatically fulfilled. Furthermore, due to the
convexity of DΓ, the stationarity condition (35) corresponds to a minimum.
This minimization problem is non-local in nature, since Ψε

Γ depends on ∇p.
Applying once again a time integration, together with a suitable time

discretization (here an implicit first-order scheme) such as

tn+1∫
tn

DΓ d ≈ ∆t DΓ

(
pn+1 − pn

∆t

)
, (37)
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the minimization problem (31), (32) and the constitutive model (33) can be
canonically coupled as

(ϕn+1, pn+1) = arg inf I(ϕn+1, pn+1). (38)

with the modified (incremental) energy

I(ϕn+1, pn+1) =

∫
Ω

Īred
B (∇ϕn+1, pn+1) dV+

∫
Ω

Ψε
Γ[pn+1] dV+

∫
Ω

∆t DΓ

(
pn+1 − pn

∆t

)
dV.

(39)
They key aspect of this paper is the analysis of the homogenization assump-
tion with phase field approaches and its implications. This homogenization
assumption affects only the first term of the potential (39). For this reason,
only this term is considered in what follows.

3. Homogenization assumption in phase field approaches

In this section, the definition of the averaged energy Īred
B is discussed

in detail. As already mentioned, this aspect is of utmost importance from
a physical point of view, since this definition enters the variational deriva-
tive (35) and thus, it governs the driving force associated with the interface’s
motion, e.g., by means of Eq. (33). Two different classes of models for de-
riving such an averaged energy can be found in the literature. Within the
first of those classes, an individual constitutive model is separately defined
for each phase and, subsequently, the average bulk’s energy is computed by
homogenization theory. Models falling within this range will be addressed
in Subsection 3.1. By way of contrast, an effective bulk’s energy is a priori
postulated in the second class of models. This effective energy depends on
the order parameter. Such models will be discussed in Subsection 3.2.

3.1. Models based on homogenization theory

Assuming that the constitutive models of the two considered phases are
variationally consistent (e.g. standard dissipative materials), they can be
defined by means of (incremental) energies Ired

B(i). With the introduction of

the Bain strains F B
(i) (deformation gradients) within the phases, the energies

can be written as

Ired
B(1) = Ired

B (F (1) · [F B
(1)]
−1), Ired

B(2) = Ired
B (F (2) · [F B

(2)]
−1). (40)
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In what follows, the deformation gradients are assumed to be constant in each
phase with respect to the spatial coordinates (a material point is considered).
For this reason, the averaged bulk’s energy is defined as

Īred
B = (1− p) Ired

B(1) + p Ired
B(2). (41)

Being further in line with standard homogenization theory, the (volumetric)
averaging of the deformation gradients belonging to individual phases has to
be equal to the (macroscopic) deformation gradient at the considered point,
i.e.,

F = (1− p) F (1) + p F (2). (42)

The only assumption which remains to be defined is the coupling of the
deformation gradients within the different phases.

Remark 3. In contrast to the natural homogenization according to Eq. (41),
a non-linear interpolation between the different energies is also sometimes
used. Certainly, such a non-linear interpolation could also be employed here.
However, it bears emphasis that a linear weighting of the energies does not
imply that the second derivative of the mixed bulk’s energy will vanish in
general, since the deformation gradients F (1) and F (2) usually depend also
on p.

3.1.1. Reuss/Sachs model

The key assumption within the classic Reuss/Sachs model is that the
stresses within both phases are identical. However, instead of enforcing this
constraint directly, a varational reformulation is used here.

Since no constraint with respect to the kinematics is considered within
the Reuss/Sachs model, the deformation gradients F (i) are completely un-
coupled. Denoting the jump of the deformation gradient across the interface
as JF K = F (2) − F (1), Eq. (42) can therefore be rewritten as

F (1) = F − p JF K
F (2) = F + (1− p) JF K . (43)

Inserting these equations into the energy (41) yields

Īred
B (F , JF K , p) = (1− p) Ired

B(1)([F − p JF K] · [F B
(1)]
−1)

+ p Ired
B(2)([F + (1− p) JF K] · [F B

(2)]
−1).

(44)
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Since energy minimization is the overriding principle within the adopted
variational setting, and since energy Īred

B is the only energy depending on
the jump of the deformation gradient, minimization of the total energy I
with respect to JF K is equivalent to minimizing Eq. (39) locally. Application
of the variational derivative shows that minimizing Eq. (44) with respect to
JF K is equivalent to the classic Reuss assumption. To be more precise,

δJF KĪred
B (F , JF K , p) =

{
(1− p) (−p)

∂Ired
B(1)

∂F (1)

+ p (1− p)
∂Ired
B(2)

∂F (2)

}
: δ JF K

=
{

(1− p) p
[
−P (1) + P (2)

]}
: δ JF K = 0

⇔ JP K = 0.
(45)

Remark 4. Minimization of Eq. (44) with respect to the jump of the de-
formation gradient shows strong analogies to the computation of the convex
hull. As well known in continuum mechanics, the convex hull has good math-
ematical properties, however, it is physically not realistic, cf. [22].

3.1.2. Taylor/Voigt model

If a jump of the deformation gradient is not permitted, i.e., F (i) = F ,
the classical Taylor model is obtained. In contrast to the Reuss model,
this assumption is kinematically compatible. However, equilibrium at the
interface is completely ignored. Hence, the Taylor assumption is statically
incompatible. Furthermore, since the Reuss model can be interpreted as a
relaxed Taylor model (relaxation with respect to JF K), the Taylor model
defines an upper bound of the energy.

3.1.3. Partial rank-one convexivication

Since the energy is usually underestimated by the Reuss/Sachs model due
to ignoring the constraints associated with kinematics, and due to the fact
that the Taylor/Voigt model overestimates the energy due to not allowing
for a relaxation, both homogenization approaches are not optimal. For this
reason, an improved homogenization method is elaborated here.

In order to improve the Reuss/Sachs model, a kinematic compatibility can
be enforced. The resulting model will be statically as well as kinematically
compatible. A two-dimensional model within the small strain setting which
is also statically as well as kinematically compatible was recently proposed in
[23]. However, it bears emphasis that the model presented here is significantly
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more general. To be more precise, this novel model can be applied to any
finite strain constitutive model which shows a variational structure - in a
three-dimensional setting. Furthermore and equally important, the model is
rigorously based on energy minimization.

According to the classical Hadamard jump condition, two deformation
gradients result from a continuous deformation, if they fulfill the compatibil-
ity condition

JF K := F (2) − F (1) = a⊗N (46)

at the interface. Here, N is the normal vector of the interface with respect to
the undeformed configuration and a denotes the jump across the interface.
In phase field models, the normal vector can be computed from the order-
parameter. To be more precise,

N =
GRADp

||GRADp||
(47)

and the deformation gradients within the two different phases are

F (1) = F− p a⊗N
F (2) = F+ (1− p) a⊗N . (48)

The insertion of these equations into Eq. (40) and Eq. (41) eventually yields

Īred
B (F ,a, p) = (1− p) Ired

B(1)([F − p a⊗N ] · [F B
(1)]
−1)

+ p Ired
B(2)([F + (1− p) a⊗N ] · [F B

(2)]
−1).

(49)

Again, the variable a describing the discontinuity enters the total energy
only through Īred

B . For this reason, a minimization of the total energy with
respect to a is equivalent to minimizing Eq. (49) pointwise. By computing
the necessary condition for a minimum

δJaKĪred
B (F ,a, p) =

{
(1− p) (−p)

∂Ired
B(1)

∂F (1)

·N + p (1− p)
∂Ired
B(2)

∂F (2)

·N

}
· δa

=
{

(1− p) p
[
−T (1) + T (2)

]}
· δa = 0

⇔ JT K = 0, T (i) := P (i) ·N .
(50)

it can be seen that the stress state predicted by this new model is statically
admissible, i.e., traction equilibrium is fulfilled.
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Remark 5. Since the normal vectorN depends on the gradient of the order-
parameter, the variational derivative (34) changes to

δp
{
Īred
B (F , p) + Ψε

Γ(p,∇p)
}

= ∂p
{
Īred
B + Ψε

Γ

}
−DIV[∂∇pĪred

B +∂∇pΨ
ε
Γ]. (51)

This clearly underlines the influence of the homogenization assumption on
the driving force.

Remark 6. Within classical models based on rank-one laminates, the orien-
tation of the interface (the normal vector N ) as well as jump direction (the
vector a) are computed by local energy minimization. By way of contrast, the
phase field parameter p defines the normal vector N and only the jump vec-
tor a is computed by local energy minimization within the proposed model.
Furthermore and in contrast to classical models based on rank-one laminates,
the evolution of the normal vector N leads to dissipation (through the evo-
lution of p). Due to the aforementioned points, the authors have named the
approach ’partial rank-one convexification’.

3.1.4. Summary

The Reuss/Sachs model, the Taylor/Voigt model as well as the novel
model based on partial rank-one convexification can be summarized as a
minimization problem of the type

(ϕn+1, JF Kn+1 , pn+1) = arg inf I(ϕn+1, JF Kn+1 , pn+1). (52)

where the energy I(ϕn+1, JF Kn+1 , pn+1) is given by

I(ϕn+1, JF Kn+1 , pn+1) =

∫
Ω

Īred
B (∇ϕn+1, JF Kn+1 , pn+1) dV +

∫
Ω

Ψε
Γ[pn+1] dV

+

∫
Ω

∆t DΓ

(
pn+1 − pn

∆t

)
dV.

(53)
The only, but nevertheless essential, difference between the Reuss/Sachs
model, the Taylor/Voigt model and the novel model based on partial rank-one
convexification is the space of admissible discontinuous deformation gradi-
ents. According to the previous subsections

JF K ∈


∅ =: UTV Taylor/Voigt model
{a⊗N | a ∈ R3} =: UR1 partial rank-one
R3×3 =: URS Reuss/Sachs model

(54)
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implying UTV ⊂ UR1 ⊂ URS and thus

inf
JF K∈URS

I ≤ inf
JF K∈UR1

I ≤ inf
JF K∈UTV

I. (55)

Remark 7. Within the computations presented in the next section, func-
tional (53) has been discretized in space by finite elements, and the resulting
nodal unknowns defining the approximation of the deformation mapping and
the order parameter have been computed by applying an LBFGS-type opti-
mization algorithm, cf. [24]. The same algorithm has also been applied in
order to solve the local problem

inf
JF Kn+1

I(ϕn+1, JF Kn+1 , pn+1) (56)

at the integration points. Further details on the implementation are omitted
here but will be published in a forthcoming paper.

3.2. Models not based on homogenization theory

For the sake of completeness and comparison, models not based on ho-
mogenization theory are also briefly discussed. In sharp contrast to the
models presented before, deriving an effective averaged energy without clas-
sical homogenization assumptions is by no means trivial or straightforward in
general – particularly, if the different phases involved show a different consti-
tutive response. Some relatively restrictive assumptions are therefore usually
required. Here, it is assumed that the energies of both phases have the same
form. The only difference arises from different Bain strains. Furthermore,
the focus lies on hyperelasticity, since the Helmholtz energies (as functions
of the deformation gradient) would not remain identical for both phases, if
dissipative effects are taken into account.

As a prototype model falling into the range of models not based on homog-
enization theory, the Khachaturyan model is discussed, cf. [1]. According
to [12], the elastic stiffnesses and the Bain strains are averaged within the
model proposed by Khachaturyan. Since, the same Helmholtz energies have
been assumed in both phases in this subsection, only the Bain strains have to
be averaged. Although the classic Khachaturyan model has been developed
in a geometrically linearized setting, a volume averaging of the engineering
Bain strains is essentially equivalent to a volume averaging of the respective
deformation gradients. Thus, the Khachaturyan model reads

Ψ̄B(F , p) = ΨB(F · [F̄ B
]−1) (57)
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with the average Bain deformation gradient

F̄
B

= (1− p) F B
(1) + p F B

(2). (58)

Remark 8. A similar extension of the Khachaturyan model to finite strains
can also be found in [25]. Within the cited paper, the Bain strains

F B
1 = Q ·U (1), F B

2 = U (2) (59)

fulfilling the twinning equation

Q ·U (1) −U (2) = a⊗N (60)

are considered and the averaged energy of the mixture is postulated to be

Ψ̄B(F , p) = Ψ̄B(F · Ū−1
(p)) (61)

where the averaged right stretch tensor is chosen as

Ū(p) = (1− p) Q ·U (1) + p U (2). (62)

Clearly, this is equivalent to the Khachaturyan model.

4. Comparison of different homogenization assumptions within phase
field theory: the one-dimensional case based on a geometrically
linearized setting

In this section, the implications resulting from different homogenization
assumptions within phase field theory are analyzed by means of a one-
dimensional academic example. It is a bar of unit length Ω = (−1/2; +1/2)
which is decomposed into two time-invariant phases (ṗ = 0). The first phase
is spanned by the interval (−1/2; 0), while the second one is defined by the
interval (0; +1/2). For each of these phases, a Helmholtz energy of the type

ΨB(i)(ε(i)) =
1

2
E(i)

(
ε(i) − εB

(i)

)2
+ Ψ0

B(i) (63)

is considered. Here, E(i) is the Young’s modulus of phase i, εB
(i) is the Bain

strain of phase i and Ψ0
B(i) is the chemical energy of phase i. The bar is

subjected to a constant stress field σ0. In the following, the closed form
solutions of this problem depending on the homogenization assumptions are
summarized.

18



Remark 9. Concerning phase field models based on homogenization theory
(see Subsection 4.1 – Subsection 4.3), the numerical solution is expected to
converge to the sharp interface problem: a constant Helmholtz energy within
the different phases and the driving force (variational derivative of the total
energy with respect to the order parameter) should be proportional to the
configurational force acting at the interface.

4.1. Voigt/Taylor assumption

Considering the classical Voigt/Taylor assumption ε(1) = ε(2) = ε, the
bulk’s energy within the diffusive interface region reads

Ψ̄B = (1− p) ΨB(1)(ε) + p ΨB(2)(ε). (64)

Since the applied boundary conditions result in a constant stress field σ0,
balance of linear momentum yields

σ = ∂εΨ̄B = σ0 ⇒ ε =
σ0 + (1− p)E(1) ε

B
(1) + pE(2) ε

B
(2)

(1− p)E(1) + pE(2)

. (65)

The insertion of this equation into the Helmholtz energies, finally leads to

Ψ(1) =
1

2
E(1)

σ0 + pE(2)

(
εB

(2) − εB
(1)

)
(1− p)E(1) + pE(2)

2

+ Ψ0
B(1)

Ψ(2) =
1

2
E(2)

σ0 + (1− p)E(1)

(
εB

(1) − εB
(2)

)
(1− p)E(1) + pE(2)

2

+ Ψ0
B(2).

(66)

Accordingly, the energies within the different phases are not constant in
the diffusive interface region, but depend on the order parameter p. This
contradicts the physical expectation associated with the underlying sharp
interface problem, see Remark 9.

4.2. Reuss/Sachs assumption

Considering the classical Reuss/Sachs assumption, the bulk’s energy within
the diffusive interface region reads

Ψ̄B = (1− p) ΨB(1)(ε− p JεK) + p ΨB(2)(ε+ (1− p) JεK). (67)
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As shown before, the classical Reuss/Sachs assumption σ(1) = σ(2) is equiva-
lent to minimizing Eq. (67) with respect to the strain jump JεK which gives
rise to the introduction of the reduced Helmholtz energy

Ψ̄B,red = inf
JεK

Ψ̄B =
1

2

E(1) E(2)(
p E(1) + (1− p) E(2)

) (ε− (1− p) εB
(1) − p εB

(2)

)2
+(1−p) Ψ0

B(1)+p Ψ0
B(2).

(68)
With this reduced energy, the solution of the problem can be computed
following the steps outlined in the previous subsection. To be more explicit,
balance of linear momentum yields

∂εΨ̄B,red = σ0 ⇒ ε =
σ0

E(1) E(2)

(
p E(1) + (1− p) E(2)

)
+(1−p) εB

(1)+p ε
B
(2)

(69)
and the insertion of this equation into the Helmholtz energies finally leads
to

Ψ(1) =
σ2

0

2 E(1)

+ Ψ0
B(1)

Ψ(2) =
σ2

0

2 E(2)

+ Ψ0
B(2).

(70)

Accordingly, the energies within the different phases are constant in the dif-
fusive interface region – as expected from a physical point of view, see Re-
mark 9.

4.3. Partial rank-one convexification

In a one-dimensional setting, rank-one convexification is equivalent to a
(standard) convexification. Since the variational formulation of the Reuss/Sachs
model is, from a mathematical point of view, a (standard) convexification,
the novel model based on a partial rank-one convexification is equivalent to
the classical Reuss/Sachs model in the one-dimensional setting. That can
also be verified by observing that the strains

ε(1) = ε− p JεK , ε(2) = ε+ (1− p) JεK (71)

are indeed kinematically compatible, i.e, they result from a continuous de-
formation mapping.
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4.4. Khachaturyan model

According to [1], the Khachaturyan model is based on the bulk’s Helmholtz
energy

Ψ̄B =
1

2
Ē(p)

(
ε− ε̄B(p)

)2
+ (1− p) Ψ0

B(1) + pΨ0
B(2) (72)

within the diffusive interface region. It depends on the averaged Bain strain

ε̄B(p) = (1− p) εB
(1) + p εB

(2) (73)

and the averaged Young’s modulus

Ē(p) = (1− p)E(1) + pE(2). (74)

Following the previous subsections, balance of linear momentum yields

σ = ∂εΨ̄B = σ0 ⇒ ε =
σ0

Ē
+ ε̄B. (75)

As a result, the bulk’s energy corresponding to strain field (75) is given by

Ψ̄B =
1

2

σ2
0

Ē(p)
+ (1− p) Ψ0

B(1) + pΨ0
B(2). (76)

Once again, it is noted that only the averaged energy (76) can be computed
in the Khachaturyan model, not the Helmholtz energies associated with the
different phases. Furthermore, it is noted that Energy (76) depends on the
order parameter.

4.5. Summary

A comparison between the different solutions corresponding to the differ-
ent homogenization assumptions is presented here. The results are based on
the material parameters summarized in Tab. 1.

Fig. 1 shows the spatial distribution of the bulk’s energy. Accordingly,
except for the Taylor/voigt model, all homogenization assumptions lead to
a similar transition between the energies of the different phases. A simple
possibility to estimate the physical reasonableness of the solutions is to set
the chemical energies of both phases to zero, e.g., Ψ0

B(1) = Ψ0
B(2) = 0. In this

case, the averaged bulk’s energy has to vanish everywhere. However, that is
not the case for the Voigt/Taylor model, cf. [25].
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phase 1 phase 2
Elastic Modulus, E [N/m2] 2.0×109 2.5×109

Poisson ration, ν [-] 0.3 0.3
Bain strain, εB

(i) [-] 0.011 0.022

Chemical energy, Ψ0
B(i) [N/m2] 1.0×105 1.5×105

Table 1: One-dimensional analysis of a bar. The bar of unit length consists of phase 1
(X ∈ (−1/2; 0)) and phase 2 (X ∈ (0; +1/2)) and is subjected to a constant stress field
σ0 = 1 × 107 [N/m2]. The length of the diffusive interface region is defined by ε = 0.04.
Material parameters used within the numerical analysis
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Figure 1: One-dimensional analysis of a bar. The bar of unit length consists of phase 1
(X ∈ (−1/2; 0)) and phase 2 (X ∈ (0; +1/2)) and is subjected to a constant stress field
σ0 = 1× 107. The diagram shows the normalized bulk’s energy.
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A more detailed analysis of the physical reasonableness can be carried
out by investigating the driving force acting at the interface. Within all
frameworks discussed here, this driving force is defined by the variational
derivative of the total energy, i.e., by δpI, see Eq. (34). Since the only
term of the total energy I depending on the homogenization assumption is
the energy Īred

B , the variational derivative δpĪred
B will be analyzed in what

follows. By taking the predetermined assumptions (hyperelastic model of
Hooke’s type), the identity Īred

B = Ψ̄B holds.
In the case of the Voigt/Taylor model, the Sachs/Reuss model or the

novel model based on partial rank-one convexification, the averaged bulk’s
energy shows the structure

Ψ̄B = (1− p) ΨB(1) + p ΨB(2). (77)

Consequently, the general structure of the driving force reads

f := ∂pΨ̄B =
[
ΨB(2) −ΨB(1)

]
− σ0 [ε2 − ε1] = JΨBK− σ0 JεK . (78)

For the Voigt/Taylor model, ε1 = ε2 holds and, hence, the driving force sim-
plifies to f = JΨBK. Accordingly, the difference in bulk’s energy is one of the
dominating factors for phase transformation. In the case of the Khachatu-
ryan’s model such a physically sound interpretation is not possible, since the
energies within the individual phases cannot be computed (the model does
not show a localization property).

The spatial distribution of the phase field’s driving force f is shown in
Fig. 2. As evident from these figures, the models should predict a constant
driving force – also in the diffusive interface region which is proportional to
the respective configurational force of the underlying sharp interface prob-
lem, cf. Remark 9. However, only the Reuss/Sachs model and the novel
model based on partial rank-one convexification (which is identical to the
Reuss/Sachs model in 1D) meet this expectation. The Voigt/Taylor model
yields the largest deviation from the physical solution – in line with the
previous observations.

5. Comparison of different homogenization assumptions within phase
field theory: the fully three-dimensional case in a finite strain
setting

Within the one-dimensional example analyzed in the previous section,
only the Reuss/Sachs homogenization as well as the novel model based on
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Figure 2: One-dimensional analysis of a bar. The bar of unit length consists of phase 1
(X ∈ (−1/2; 0)) and phase 2 (X ∈ (0; +1/2)) and is subjected to a constant stress field
σ0 = 1×107. The diagram shows the normalized driving force at the interface – to be more
precise, it shows the normalized variational derivative of the bulk’s energy with respect to
the phase field parameter.
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partial rank-one convexification led to the physically correct solution (spa-
tially constant driving force). In this section, a fully three-dimensional set-
ting will be considered. In this case, the Reuss/Sachs homogenization and
the novel model are no longer equivalent.

5.1. Representative volume element with piece-wise constant deformation gra-
dient

A three-dimensional representative volume element (RVE) is numerically
studied in this section. The RVE consists of two time-invariant phases (ṗ = 0)
which are assumed to be governed by the hyperelastic Helmholtz energies

ΨB(i) = ΨB(F e
(i)) (79)

where
F e

(i) = F (i) · [F B
(i)]
−1 (80)

are the elastic parts of the deformation gradients. Hence, the only difference
in the constitutive response is due to the different Bain strains F B

(i). For the
sake of simplicity, an isotropic neo-Hooke Helmholtz energy is adopted for
ΨB in what follows.

If one assumes that the deformation gradients F (i) are spatially constant
within the two phases, the averaged bulk’s Helmholtz energy of the RVE
is given by Ψ̄B and, consequently, the macroscopically fully relaxed RVE’s
bulk’s energy can be computed from the minimization problem

inf
F

Ψ̄B. (81)

It bears emphasis that, due to the assumption ṗ = 0, all other parts of the
total energy are constant (time-independent) and that only the bulk’s energy
is unknown.

From a physical point of view, Energy (81) should depend on the Bain
strains F B

(i) as well as on the topology of the interface between the different
phases. Here, a planar interface characterized by its normal vector N is
considered and the Bain strains are chosen as

F B
(1) = Q ·UB

(1), F B
(2) = UB

(2) (82)
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with the right stretch tensors

UB
(1) =


α + γ

2

α− γ
2

0

α− γ
2

α + γ

2
0

0 0 β

 , UB
(2) =


α + γ

2

γ − α
2

0

γ − α
2

α + γ

2
0

0 0 β

 (83)

and the rotation

Q =


2αγ

α2 + γ2
−α

2 − γ2

α2 + γ2
0

α2 − γ2

α2 + γ2

2αγ

α2 + γ2
0

0 0 1

 . (84)

In these equations, the parameters α, β and γ define the strain induced
by a phase transformation. In line with [25], these parameters are set to
α = 1.0619, β = 0.9178 and γ = 1.0231. For this choice, the twinning
equation q

F B
y

= Q ·UB
(1) −UB

(2) = a⊗N (85)

shows two solutions. These are: N = ±e1 and N = ±e2 where ei define the
cartesian base vectors. As a result, such orientations characterize coherent
interfaces (with respect to the initial undeformed state), cf. Remark 10.
Accordingly, Energy (81) should vanish in this case (no chemical energies
are considered here). By way of contrast, for orientations N for which the
Bain strains cannot be derived from a continuous deformation mapping, i.e.,
the twinning equation (85) cannot be fulfilled, the respective Energy (81)
should not vanish. To be more precise, this energy is expected to depend
monotonically on the mismatch angle.

Energy (81) is now computed for all different homogenization assump-
tions. The first crucial observation is that neither the Voigt/Taylor model
nor the Reuss/Sachs model depend on the normal vector N . As a result,
Energy (81) is not affected by the mismatch angle for these homogenization
assumptions. In sharp contrast, the novel model based on partial rank-one
convexification does depend on N . The results obtained from the different
homogenization assumptions are summarized in Fig. 3. As expected from
the order relation between the different homogenization assumptions accord-
ing to Eq. (55), the energies predicted by the novel model based on partial
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Figure 3: Three-dimensional analysis of a representative volume element (RVE) consisting
of two time-invariant phases (ṗ = 0) which are assumed to be governed by hyperelastic
Helmholtz energies. The phases are separated by a planar interface. The Bain strains
within the different phases are defined in Eq. (82). The diagram shows the averaged
bulk’s Energy (81) of the RVE for three different homogenization assumptions. The energy
predicted by the novel model based on rank-one convexification is bounded by the constant
energies corresponding to the Taylor/Voigt model and to the Reuss/Sachs model. Only
the energy associated with the novel model depends monotonically on the mismatch angle.
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rank-one convexification are bounded by those related to the classical ap-
proach by Voigt/Taylor and to that by Sachs/Reuss. Furthermore, only the
energy associated with the novel model depends on the mismatch angle. The
larger the mismatch, the larger the respective mismatch energy. Coherent
interfaces correspond to energy minima.

In summary only the novel model naturally defines the mismatch energy
at incoherent material interfaces. An additional artificial mismatch energy
is thus not required.

Remark 10. An interface is called incoherent, if the Cauchy-Hadamard con-
dition is not fulfilled for the Bain strains (the respective deformation gradi-
ents F B

(i)). However, that does not imply that the total deformation is incom-
patible. As a matter of fact, compatibility is enforced in the novel approach
based on partial rank-one convexification for the total strains F , not for the
Bain strains.

5.2. Spherical inclusion embedded in a cube

A slightly modified version of the problem discussed in the previous sub-
section is investigated here. Once more it is an RVE consisting of two time-
invariant phases with the same bulk’s Helmholtz energies as considered before
(i.e. see Eq. (79) and Eqs. (80) and (82)). However, and in contrast to the
example analyzed before, the geometry is more complex. To be more precise,
phase 1 is now a spherical inclusion (normalized unit diameter) embedded
in a cube (2 × 2 × 2) of phase 2. In order to model this problem realisti-
cally, the assumption of a spatially constant deformation gradient within the
two phases is abandoned here. Instead, the RVE is discretized by finite ele-
ments. To be more explicit, a mesh consisting of 204.273 tri-quadratic tetra-
hedron elements is used. Since the phases are assumed as time-invariant,
the only unknown at the global level is the deformation mapping. The re-
sulting 825.558 deformation degrees of freedom are computed by means of an
LBFGS-type optimization algorithm as minimizer of the total energy. Again,
an unconstrained minimization is considered, i.e., homogeneous Neumann
boundary conditions (stress-free surface) are applied. The 7.353.828 DOFs
(Reuss/Sachs-model) and the 2.451.276 DOFs (model based on partial rank-
one convexification) characterizing the jump in the deformation gradient are
computed in the same manner.

The results obtained from the Taylor/Voigt, the Reuss/Sachs and the
novel model based on partial rank-one convexification are summarized in
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Figure 4: Spatial distribution of the bulk’s Helmholtz energy at a matrix-inclusion interface
for different homogenization assumptions. Coherent interfaces are those represented by
the normal vectors N = ±e1 and N = ±e2. Only the novel model based on partial
rank-one convexification captures the physically correct minima.
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Fig. 4. According to the twinning equation (85) and the underlying Bain
transformations (82), coherent interfaces are those represented by the nor-
mal vectors N = ±e1 and N = ±e2. Consequently, the bulk’s Helmholtz
energy associated with such orientation should correspond to a minimum.
As can be seen in Fig. 4, this is only the case for the novel model based
on partial rank-one convexification. By way of contrast, the Taylor/Voigt
as well as the Reuss/Sachs assumptions lead to the opposite result: Minima
are associated with interfaces showing the largest mismatch angle. Inter-
estingly, the Taylor/Voigt and the Reuss/Sachs homogenization assumption
lead qualitatively to the same results.

6. Conclusions

The presented paper provided an analysis of the influence of homoge-
nization assumptions in phase field theories. As a prototype, two phases
driven by an Allen-Cahn-type model were considered. Within such phases,
the mechanical response was assumed to be governed by means of a general
variational principle. This principle is embedded in a three-dimensional fi-
nite strain setting and includes so-called standard dissipative materials in the
sense of Halphen and Nguyen. It was shown that the underlying homogeniza-
tion assumptions are indeed of utmost importance, since they define several
fundamental physical properties, e.g., the driving force of material interfaces.
It turned out that none of the existing homogenization assumptions captures
all relevant physical characteristics. For this reason, a novel homogenization
approach was advocated. From a mathematical point of view, this new model
can be interpreted as a partial rank-one convexification. Within a variational
setting based on (incremental) energy minimization, the energies predicted
by novel approach are bounded by the Voigt/Taylor and the Reuss/Sachs
model. The new approach was shown to be statically and kinematically
compatible. Furthermore and equally important, it naturally defines the
mismatch energy at incoherent material interfaces.
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