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Abstract.  

Magnesium alloys show a deformation behaviour, which is quite different from that of other 
lightweight materials like aluminium. What constitutes the difference is the respective crystalline 
structure, namely hexagonal close-packed (hcp) for magnesium and face-centred cubic (fcc) for 
aluminium. Capturing the special features of the deformation phenomena of magnesium hence 
requires accounting for the microstructural mechanisms. This is realised with the help of crystal 
plasticity. The specific slip mechanisms occurring in magnesium are identified and single crystals 
as well as textured polycrystals are analysed numerically. Comparing with results of channel-die 
tests yields the parameters of the model. Finally, yield surfaces are generated by virtual testing of 
representative volume elements and a phenomenological anisotropic yield function is established. 
The linking of micro- and mesoscale provides a procedure for the simulation of the yielding and 
hardening behaviour of arbitrarily textured solids with hcp structure. 

 

Keywords: hcp metals, magnesium, crystal plasticity, twinning, yield surface, anisotropy, form-
ing. 

 

1 Introduction 

The low density of magnesium (1.74 g/cm3) and its relatively high specific strength constitute its 
attractiveness for applications in transportation industries, where saving of structural weight and 
reduction of fuel consumption are urgent challenges. The still moderate formability of magne-
sium alloys obstructs a broad application, however. Developing alloys with improved properties 
demands a deeper understanding of the controlling deformation mechanisms, first of all, and reli-
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able simulation tools for predicting the forming capabilities in the next step. Last but not least, 
the structural behaviour under mechanical loads and the lifetime of the component has to be as-
sessed. Conventional constitutive models of plasticity fail if applied to magnesium. Adequate 
models have to account for several anomalies of the mechanical behaviour. Magnesium and its 
alloys show a pronounced strength differential effect at low homologous temperatures, i.e. the 
tensile strength is much higher than the strength in compression. Furthermore, magnesium exhib-
its a low ductility as well as strong deformation anisotropy.  

These anomalies in the mechanical behaviour of magnesium originate from its hexagonal close-
packed (hcp) crystallographic structure. Hcp metals hold a reduced number of available slip sys-
tems compared to body-centred cubic (bcc) and face-centred cubic (fcc) lattices, making plastic 
deformation more difficult. With the asymmetric distribution of slip systems over the crystallo-
graphic reference sphere, various primary and secondary slip and twinning mechanisms can and 
have to be activated at the same time. Understanding the mechanisms of dislocation gliding and 
deformation twinning for single crystals and polycrystalline aggregates constitutes the foundation 
for modelling of the macroscopic mechanical behaviour. To this end, microstructural experimen-
tal observations, mechanical tests and numerical modelling are combined.  

Channel-die compression tests on Mg single crystals for various crystallographic orientations and 
on textured and polycrystals have been conducted by Kelley and Hosford [1,2]. Their data are used 
to identify the parameters of a crystal plasticity model. The model is then applied for predicting 
the mesoscopic deformation of polycrystalline representative volume elements (RVEs). In this 
way the microscopic features developing during plastic deformation of Mg are linked to the 
mesoscale and allow for predicting the yielding behaviour of arbitrarily textured solids, for ex-
ample rolled plates.  

Due to limitations in computational power, simulations of the behaviour of macroscopic struc-
tures cannot be performed effectively based on models of crystal plasticity. They require constitu-
tive equations to be used in the framework of phenomenological plasticity, i.e. a plastic potential 
and a flow rule. The presented method can be used to calibrate parameters of any plastic poten-
tial. Here, the plastic potential proposed by Cazacu and Barlat [3] is used for the simulation of a 
cup-forming process.  

2 Deformation mechanisms and test configuration 

The deformation mechanism in magnesium in relation to its crystallographic planes have been 
studied intensively over the years, starting with investigations by Hauser et al.[4], Reed-Hill and 
Robertson[5], Yoshinaga and Horiuchi[6]. Any somewhat complete reference list would exceed the 
limitations of the present report. Modelling activities started recently and concentrate on the alloy 
AZ31 as the most common wrought magnesium alloy, see e.g. Agnew et al.[7,8], Staroselsky and 
Anand[9]. Resuming the results, the relevant deformation mechanisms of magnesium and its al-
loys are still subjected to discussion. Generally, any prismatic a  and one pyramidal +a c  slip 
system family additionally to basal slip and tensile twinning appear to be necessary for a com-
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plete description. Since pyramidal a  slip is equivalent to a combination of basal and prismatic 
a  cross-slip, this particular system will not be considered in the following calculations. The 

primary systems basal a , prismatic a , pyramidal +a c  slip plus tensile twinning on { }1012  
are chosen here to model the mechanical behaviour in the framework of crystal plasticity. These 
families include three basal, three prismatic, six pyramidal and six twinning systems. Table 1 
summarizes the considered deformation modes. 

Name # of Slip Systems Plane Slip Direction 

Basal a  3 { }0001  1120  

Prismatic a  3 { }1100  1120  

Pyramidal +a c  6 { }1122  1123  

Tensile Twin 6 { }1012  1011  

Table 1: Deformation modes considered 

The kinematical theory for the mechanics of crystals has been established in the pioneering work 
of Taylor[10] and the theory by Hill[11], Rice[12], Hill and Rice[13]. The model of crystal plasticity 
used here employs the framework of Peirce et al.[14] and Asaro[15,16]. The implementation in the 
commercial finite element code ABAQUS is based on the user-material routine of Huang[17]. The 
theoretical background is shortly outlined in the following. The complete set of equations used to 
describe the deformation behaviour of each slip system is described by Graff[17]. 

The crystalline material undergoes elastic stretching, rotation and plastic deformation. where the 
latter is assumed to arise solely from crystalline slip. The total deformation gradient, F, is decom-
posed in two parts, one describing plastic shear of the material, pF , and the second stretching and 
rotation of the lattice. The rate of change of pF  is related to the slip rate ( )αγ  of the α slip system 
by 

 p p 1 ( ) ( ) ( )α α α

α

γ−⋅ = ∑F F m n , (1) 

where the sum ranges over all activated slips systems, and the unit vectors ( )αm , ( )αn  are the slip 
direction and the slip-plane normal, respectively. The crystalline slip is assumed to obey Schmid's 
law, i.e. the slipping rate ( )αγ  depends on Cauchy's stress tensor, T, solely through Schmid's re-
solved shear stresses, 

 ( ) *( ) *( )0α α αρτ
ρ

= ⋅ ⋅n T m , (2) 

where ρ0 and ρ are the mass densities in the reference and current states. According to Peirce et 
al.[14], the constitutive equation of slip is assumed as a viscoplastic power law,  
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where ( )
0
αγ  is a reference strain rate, ( )

Y
ατ characterises the current strength of the α slip system, 

and n is the rate sensitivity exponent. Strain hardening is characterized by the evolution of the 

strengths 

 ( )( ) ( )
Y hα α

αβ
β

τ γ γ= ∑ , (4) 

with hαβ being the self (α = β) and latent (α ≠ β) hardening moduli depending on Taylor's cumu-

lative shear strain on all slip systems, 

 ( )

0

t

dα

α

γ γ τ= ∑∫ . (5) 

According to Table 1, the slip systems are grouped into four families where twinning is treated 
like slip. 

In order to study the deformation mechanisms of pure magnesium, Kelley and Hosford[1,2] per-
formed channel-die compression tests as shown in Figure 1 on single crystals and on textured 
magnesium samples cut out of a rolled plate. Small cuboids of approximately 6×10×13 mm3 were 
compressed in a steel channel in one direction, while deformation in the second direction was 
constrained and the third one was free. By changing the initial orientation of the samples, see Ta-
ble 2 for the single crystals, different slip and slip/twinning modes can be activated. The experi-
mental results of Kelley and Hosford are used here as a reference, from which critical resolved 
shear stresses for each of the slip systems as well as hardening parameters have been calibrated.  

test loading (1) constraint (2) 

A 0 0 0 1  1 0 1 0  

B 0 0 0 1  1 2 1 0  

C 1 0 1 0  0 0 0 1  

D 1 2 1 0  0 0 0 1  

E 1 0 1 0  1 2 1 0  

F 1 2 1 0  1 0 1 0  

G 0 0 0 1 at 45° 1 0 1 0  

Table 2: Definition of the different orientations used with the channel-die compression tests 
on single crystals by Kelley and Hosford[1,2]  

The die and the loading punch are modelled as rigid surfaces. Friction between the sample and 
the rigid surfaces is accounted for, assuming a Coulomb friction coefficient of 0.05 for all tests. 
Since the experiments have been performed with quasistatic loading, a strain rate sensitivity ex-
ponent n = 50 is taken in Equation (3), making the simulation results almost rate independent. 
The reference strain rate of ( ) 3

0 10αγ −=  is chosen for all slip systems to be compatible with the 
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time scale in the FE simulations. 

 

Fig. 1: Channel-die compression test: (a) schematic view and (b) FE model of a polycrystal 

A comparison of simulation and test results for single crystals of orientations A to G, see Table 2, 
is shown in Fig. 2. A good qualitative and quantitative agreement between experimental and 
simulated results is obtained. Particularly, the simulations capture the anomalous hardening be-
haviour of orientations E and F with relatively low yield stress and almost no hardening at strains 
smaller than 6%, followed by a sudden increase in stress, which is typical for activation and satu-
ration of deformation twinning. 
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Fig. 2: Channel-die compression tests of pure Mg single crystal: simulation results and tests 
(Kelly and Hosford, 1968a). 
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Fig. 3 displays the respective results for the polycrystalline samples cut from a textured rolled 
plate. The orientations with respect to compression loading and applied constraint for the poly-
crystalline case are indicated by two of the letters L (longitudinal or rolling), T (transverse) and S 
(short transverse or thickness), where the first letter denotes the loading direction and the second 
the constraint direction. The simulations of compression tests in L, T and S-direction were per-
formed on polycrystalline aggregates of 8×8×8 solid elements.  
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Fig. 3: Channel-die compression tests of textured Mg rolled plate material, simulation and test 
results (Kelly and Hosford[1,2]) 

3 Yield Surfaces of Polycrystals 

As simulations of the structural behaviour of polycrystals can hardly be performed with crystal 
plasticity models formulated on the micro-scale, the next step in the modelling chain is the pre-
diction of yield loci and strain hardening in the (L,T)-plane of the rolled material and the fitting 
of these numerically generated isocontours by an analytical expression of the yield potential. To 
this end, the same polycrystalline aggregate is investigated under biaxial loading conditions per-
forming radial in-plane loading paths with different ratios of T L =arctanσ σ ϕ , where ϕ is the 

angle to the rolling direction (L) of the plate. For each loading path, several unloading steps have 
been realised in order to separate elastic and plastic mesoscopic strain. Periodic boundary condi-
tions were applied on the surfaces of the RVE. The results are depicted in Fig. 4 a and 4 b as 
dashed lines with symbols.  
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Fig. 4: Yield surfaces and hardening obtained from biaxially loaded RVEs (dashed lines with 
symbols) in comparison with predictions of the Cazacu & Barlat model: parameter fit using a 
quadratic function (a) and an exponential function (b) of equivalent plastic strain 

 

A phenomenological yield potential for textured magnesium has to account for both anisotropy 
and the asymmetry under tension or compression, which is due to the activation of twinning. Ac-
counting for latter, namely shifting the centre of the yield surface out of the origin of the devia-
toric plane, requires including the third invariant of the stress tensor. Cazacu and Barlat (2004) 
have proposed the following yield potential  

 ( )
3

0 0 0 32
2 3 Yf J cJ τ≡ − = . (6) 

where 0
2J  and 0

3J  are generalisations of the second and third invariant of the stress tensor for 
orthotropic materials, containing 6 and 11 model parameters, respectively, in the general three-
dimensional case. The total number of model parameters reduces to 7 in the plane stress case. 
Different from the yield criteria of von Mises and Hill, convexity of the yield surface is not a pri-
ori ensured and has therefore to be introduced as an additional side condition, while identifying 
the respective parameters, in order to meet Drucker’s postulate of material stability. 

In order to describe the strain hardening of the material, the parameters 0
2J  and 0

3J  have been 
taken to be dependent on the equivalent plastic strain. Two types of functions have been assumed 
to describe this dependency: quadratic functions and saturating exponential laws. The fitting 
process has been carried out using a least-square fit minimising the difference between Equation 
(6) and the yield contours predicted by the polycrystalline RVE. The results are also displayed in 
Figure 4 as solid lines. With the quadratic dependence (Fig. 4a), a good agreement between the 
mesoscale and the phenomenological yield surfaces, whereas for the exponential one (Fig. 4b), 
the fit is less satisfying as the hardening in tension is not well reproduced by the phenomenologi-
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cal model. However, considering the ratio of transverse and short transverse strain, i.e. the so-
called Lankford coefficient, r, the exponential fit yields a more realistic approximation, which 
matches the order of magnitude, at least. 

The r-value has a strong effect on the shape and the quality of formed products. As an example, 
the forming analysis of a cylindrical cup leads to different predictions of the cup’s shape. Low 
values of r as obtained by the quadratic hardening functions will cause a thickness reduction of 
the sheet and the “earing” due to anisotropic deformation is less pronounced. Higher r-values will 
cause deformation mainly in the sheet plane, consequently the “earing” is more pronounced (see 
exp-fit in Figure 5b). 
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Fig. 5: Lankford coefficients (r-values) resulting from two different parameter fits: the differ-
ent yield loci (a) and predictions of the plastic equivalent strain in cup forming using the two 
fits from Fig. 4(b) 

4 Conclusions 

A crystal plasticity model has been used to study the deformation mechanisms of magnesium. 
Simulations of channel-die compression tests and uniaxial tension and compression tests revealed 
that the anomalous deformation behaviour can be understood considering four deformation 
mechanisms and their activation. Once the material parameters of crystal plasticity have been 
identified, they can be used for predicting the mechanical response of arbitrarily textured poly-
crystalline materials by building aggregates of single crystals. For application to the analysis of 
structural components, a phenomenological yield potential and a respective hardening rule has 
been established. A satisfactory formulation of hardening of magnesium is still an open question, 
however. The presented methodology links investigations on the micro-level with simulation 
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techniques used on the length scale of engineering structures.  
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