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ABSTRACT 
The purpose of this work is to simulate the evolution of ductile damage and failure 
involved by plastic strain reversals using damage models based on either Continuum 
Damage Mechanics (CDM) or porosity evolution. A low alloy steel for pressure vessels 
(20MnMoNi55) was chosen as reference material. The work includes both experimental 
and simulation phases. The experimental campaign involves different kinds of 
specimens and testing conditions. First, monotonic tensile tests have been performed in 
order to evaluate tensile and ductile damage behaviour. Then, the cyclic yielding 
behaviour has been characterized performing cyclic plasticity tests on cylindrical bars. 
Finally, cyclic loading tests in the plastic regime have been made on different Round 
Notched Bars (RNBs) to study the evolution of plastic deformation and damage under 
multiaxial stress conditions. The predictions of the different models were compared in 
terms of both, the specimens macroscopic response and local damage. Special emphasis 
was laid on predictions of the number of cycles prior to final failure and the crack 
initiation loci.  
 
KEYWORDS: cyclic plasticity, damage, porous metal plasticity, Continuum Damage 
Mechanics (CDM) 
 
NOTATION 
aij internal variable for kinematic hardening 
b isotropic hardening exponent 
dij Eulerian strain rate tensor 
h(α) internal variables for isotropic hardening 
q stress deviator related part of the yield function 
q1; q2; q3 parameters of the GTN and LPD models 
p hydrostatic stress related part of the yield function 
C kinematic hardening modulus 
D damage variable in PB model 
D0  initial damage in PB model 
Dcr  critical damage in PB model 
E0  Young’s modulus of undamaged material 
E effective (damaged) Young’s modulus 
H〈 〉 step function 
f void volume fraction 
fc critical void volume fraction 
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f* damage variable in GTN and LPD 
Rε ratio of minimum to maximum strain of the cycle 
Rδ ratio of minimum to maximum displacement of the cycle 
R current radius of the yield surface 
R0 initial yield stress (zero plastic strain) 
R∞ saturated radius of the yield surface 
xij backstress tensor 
x'ij backstress tensor deviator 
α damage exponent 
εij  strain tensor 
el
ij!   elastic strain tensor 
pl
ij!  plastic strain tensor 

εcr theoretical failure strain under uniaxial state of stress (PB model) 
εmax maximum strain of the cycle 
εmin minimum strain of the cycle 
εf failure strain measured in a tensile test 
εth damage threshold strain (uniaxial) 
pl
eq!  accumulated equivalent plastic strain 
γ kinematic hardening exponent 
κ damage acceleration parameter 
λ plastic multiplier 
ρ radius of curvature of the neck in a tensile test 
σeq  equivalent von Mises stress 
σij  Cauchy stress tensor 
σ'ij Cauchy stress tensor deviator 
σm  mean stress 
σy  yield strength 
σu  ultimate stress 
ν  Poisson’s ratio 
Φ yield function 
 



1. INTRODUCTION 
The micromechanical approach to material failure has received considerable attention in 
the last two decades as a suitable alternative to more traditional methodologies. Its 
application has been so far mainly focused on the prediction of ductile failure in metals 
and alloys, which is known to be the result of microvoid nucleation from inclusions 
such as carbides and sulfides, their growth and coalescence  due to plastic deformation. 
The modelling of this process at the mesoscale is the basis for the prediction of ductile 
failure in macroscopic components and structures. Many models have been developed 
since the initial studies of McClintock (1968) and Rice and Tracey (1969). They can be 
classified into three main classes: i) abrupt failure criteria, ii) porous metal plasticity, 
and iii) continuum damage mechanics (CDM). In the first group, failure is predicted 
when a micromechanical variable, for instance the cavity volume fraction (Rice and 
Tracey (1969), reaches a critical value characteristic of the material. In the second 
group, damage effects are accounted for into the plastic potential by a softening term, 
which is usually related to the void volume fraction in the material, see Gurson (1977), 
Needleman and Rice (1978), Tvergaard and Needleman (1984), Rousselier (1987). 
More recently, a number of unit cell based finite element studies have been performed 
in order to correlate void evolution and interaction with the resulting mesoscale material 
yield function. The role of void size was recently investigated in Tvergaard and 
Niordson (2004) using a non-local plasticity model proposed by Acharya and Bassani 
(2000), in Wen et al. (2005) incorporating void size into the Gurson model based on the 
Taylor dislocation model and in Li and Huang (2005) and Huang and Li (2005) as a 
boundary value problem. 
Schacht et al. (2003) used the 3D voided unit cell to investigate the role and the effects 
associated with the crystallographic orientation of the matrix material, finding a 
substantial dependency of growth and coalescence on the anisotropy of the material 
surrounding the voids. Bonfoh et al. (2004) used porous metal plasticity to model 
damage evolution initiated by secondary included particles debonding in a 
polycrystalline material. The model developed by Gurson, Tvergaard and Needleman 
(Tvergaard and Needleman (1984))(GTN model) is extensively used to study ductile 
failure and crack propagation (Xia and Shih, 1995, Brocks et al., 1996, Manhken, 2002, 
Besson et al., 2003, Negre et al., 2004, Yuan and Chen, 2004). 
The CDM approach, initially proposed by Lemaitre (1985), considers instead the effects 
associated to a given damage condition through the definition of a thermodynamic state 
variable. Damage affects not only the yield function but also reduces the stiffness 
through the definition of the effective stress. Relative to the initial framework proposed 
by Lemaitre, several damage models using special expressions for the damage 
dissipation potential, have been derived and validated experimentally by various authors 
(Chandrakanth and Pandey (1993), Bonora (1997a,b), Tay and Yang (1986), Tay, 
(1990), Lin et al. (2004), Bonora et al. (2005)). More recently, a number of so-called 
non-local theories have been proposed (Fleck et al., 1994, Fleck and Hutchinson, 1997, 
Bamman et al., 1999). Anisotropic damage evolution was considered in Brünig, (2003), 
Brünig and Ricci (2005) and Menzel et al. (2005) while Voyidajis et al. (2004) 
developed a coupled non-local viscoplasticity and a non-local viscodamage model using 
the Kachanov damage definition. Lammer and Tsamakis (2000) compared different 
CDM models with reference to homogeneous and inhomogeneous deformations 
providing a formulation generalization to finite deformation. 



However, engineering components and structures are typically subjected to cyclically 
varying loading conditions, which can eventually force the material to undergo cyclic 
plastic flow. The accumulation of plastic deformation with the number of cycles is a 
source of damage that, sooner or later, will lead to material failure. Damage is related to 
the irreversible processes that occur in the microstructure, therefore its presence affects 
the material constitutive response at meso/macro scale. Examples of conditions where 
plastic strain reversals may occur are earthquake loadings, cyclic overloads and the 
reeling of pipelines. Under cyclic plastic loading, different irreversible microstructural 
changes take place. At the lower amplitudes, persistent slip bands and rearrangement of 
dislocation systems into cell structures are the mechanisms that lead to low-cycle 
fatigue failure by crack initiation at grain boundaries (Klesnil and Lukas (1980); Polak 
(1991)). At the higher amplitudes, quasi-static failure due to void nucleation and growth 
at the secondary phase inclusions occur, for which very short lives are expected. 
Still little attention has been given to the possibility of incorporating damage into cyclic 
plasticity by means of micromechanics. Recent works regarding porous metal plasticity 
are the ones of Leblond et al. (1995) as well as Besson and Guillemer-Neel (2003) who 
introduced nonlinear kinematic hardening into the GTN-model. Cedergren et al. (2004) 
used a similar formulation but included viscoplasticity to simulate the behaviour of a 
powder metallurgy steel. 
As far as CDM is concerned, Pirondi and Bonora (2003) extended the nonlinear CDM 
model of Bonora (1997) to tension-compression loading introducing unilateral 
conditions in the evolution of damage and plastic strain. Even more recently, in Xiao 
(2004) fatigue and creep damage were modelled by coupling two separate damage 
variables, and Yang and Nasser (2004) and Gomez and Basaran (2005) developed a 
coupled damage- viscoplastic constitutive model to study failure of solder joints in 
surface-mount integrated circuits. The relationship between damage models of the CDM 
and porous metal plasticity group is illustrated by Steglich et al. (2005) using unit cell 
models. 
The limited experience in the application of micromechanics to cyclic plasticity failure 
leaves the issue of transferability of the models between different stress states (i.e. 
triaxialities) virtually unexplored. In Pirondi and Bonora (2003) a good correlation was 
found between a cyclic plasticity loading experiment conducted on a Round Notched 
Bar (RNB) and the corresponding simulation with a CDM model.  
The present paper is devoted to the extension of the experience made in Pirondi and 
Bonora (2003) in order to assess the predictive capabilities of micromechanical models 
based on either porosity evolution or CDM. In particular, the models of Leblond et al. 
(1995) (LPD model) and of Pirondi and Bonora (2003) (PB model) are considered for 
the two categories, respectively. A low alloy steel for pressure vessels (20MnMoNi55) 
is chosen as reference for this study. The work includes both experimental and 
simulation phases. The experimental campaign involves different kinds of specimens 
and testing conditions: 
i) Monotonic tensile tests to evaluate tensile and ductile damage behaviour. The 

aim of these experiments is also to calibrate the damage parameters. 
ii) Cyclic plasticity tests on cylindrical specimens to characterise uniaxial cyclic 

yielding behaviour. 
iii) Cyclic plasticity tests on Round Notched Bars (RNBs) with different 

diameter/notch radius ratios to study plasticity and failure evolution under multiaxial 
stress conditions.  



The calibration of damage parameters based on tensile tests was performed since a well-
established procedure is available in this case (Bernauer and Brocks (2002), Bonora et 
al. (2004)). The underlying assumption is that failure under cyclic plastic loading is a 
result of void nucleation, growth and coalescence process, too, as it may occur for very 
high plastic strain amplitudes and/or triaxialities.  
The contribution concerns the comparison of the experiments on RNBs with the results 
of CDM and porosity models in terms of both, the specimens’ macroscopic response 
and local damage evolution. Special emphasis is laid on predictions of the number of 
cycles prior to final failure and the crack initiation loci.  
 
2. MODELLING 
Axisymmetric FE models of the specimen geometries described in the next chapter are 
developed using 4-noded, fully integrated elements. Since stress gradients occurring in 
the presently used test samples are relatively small, linear elements were chosen to 
capture enough details of the stress distribution and reduce computational burden at the 
same time. Symmetry conditions are imposed in order to model only one quarter of the 
geometry. The mesh is built up in order to have an element dimension of about 0.1mm 
in the region where failure is expected to occur, which is the typical dimension of a 
RVE in metals (Lemaitre (1996)). In this way it is possible to define mesocrack 
initiation when the first element attains critical damage at all of its integration points. 
The simulations are run using ABAQUS v.6.3 software with subroutines specifically 
developed for the micromechanical models. The constitutive framework, 
micromechanical models and cyclic yielding behaviour are described below. 
 
2.1 Rate independent plasticity framework 
Inelastic deformations are described in the framework of the classical theory of rate-
independent plasticity. The yield function has the general form 
! q, p,h
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s’ij denoting the deviatoric part of the tensor sij. The dependence of Φ on p vanishes for 
incompressible plastic deformations, but appears in pressure-dependent plasticity. The 
difference between Cauchy stresses, σij, and back stresses, xij, for kinematic hardening, 
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is used. The scalar quantities h(α) denote internal variables for isotropic hardening or 
softening. The (symmetric) strain rate deformation tensor is decomposed in an elastic 
and a plastic contribution, 
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which is equivalent to the multiplicative decomposition of the respective displacement 
gradients for small elastic strains. Hooke's law is assumed for elastic deformation rates 
and Jaumann stress rates according to the Hughes and Winget (1980) approach 
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is postulated for the plastic deformation rates. The two scalar variables, 
q
e& and 

p
e& , 

denoting deviatoric and dilatoric strain rates as introduced by Aravas (1987), have to 
satisfy the condition 
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which derives from eliminating the plastic multiplier, !& . 
Finally, evolution equations for the internal variables of isotropic and kinematic 
hardening, 

( )

( )

pl( ) ( )
ijij

pl ( )
ij ij ijij

h g ,s ,h

a F ,s ,h

! !

!

"

"
#

$=
%
&
%=
'

&

 (7) 

complete the constitutive relations. Strain hardening materials contain a single scalar 
hardening variable, the accumulated equivalent plastic strain, 
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determining the current flow stress by a material dependent relation R( pl
eq! ). 

 
2.2 Damage models 
Leblond-Perrin-Devaux (LPD). The damage models are formulated in the framework 
of the theory of rate-independent, but pressure-dependent plasticity. Models of ductile 
damage include (at least) one additional internal variable - besides the accumulated 
equivalent plastic strain, εpl

eq, for isotropic and back stresses, xij, for kinematic 
hardening - which is identical to or depends on the void-volume fraction, f. The latter is 
defined as the ratio of the volume of all cavities in a material element to its total 
volume. An evolution equation holds for the void-volume fraction, consisting of a void 
growth and a void nucleation part, in general, 
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The growth term is obtained from the conservation of mass, 
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and the nucleation term is commonly adopted from an empirical approach by Chu and 
Needleman (1980) assuming a normal distribution of void nucleating particles:  
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From eqns. (13) and (14) it turns out that negative void accumulation is obtained for 
negative strain rates. The various models proposed in this context differ mainly by the 
yield function, eqn. (1). The yield function of the so-called GTN model,  
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has originally been derived from micromechanical considerations by Gurson (1977). 
The modifications by Needleman and Tvergaard (1984); Tvergaard and Needleman 



(1984) concern the introduction of three additional material parameters, qi (i = 1, 2, 3), 
affecting the yield behaviour and the damage variable, f*, which equals the void-volume 
fraction, f, up to a critical value, fc, for beginning coalescence of voids, beyond which 
damage is accelerated by a factor κ > 1, 
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The GTN model accounts for isotropic hardening only, which limits its application to 
monotonous loading, in principle. Leblond, Perrin, Devaux (1995) have extended 
Gurson's yield function to kinematic hardening by replacing the Cauchy stress tensor by 
the difference of Cauchy stress and backstress tensor, eqn. (2), which leads to the yield 
function 
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The quantities 
1

! ,
2

! result from a re-calculation of the homogenisation problem for 
hardening material. The numerical implementation used here is described in Mühlich 
and Brocks (2003). 
 
Pirondi-Bonora (PB). In Bonora (1997a) the material yield function was written as: 
( , , ) ( , , ) 0ij ij ijs R x q f R x D! = " = , (15) 

being f(R,xij;D) the experimentally determined material flow curve, where the effects of 
backstress are considered through a quadratic term as usual. The dependence on D is 
implicit in the sense that it someway affects the yield properties but it is experimentally 
not possible to separate the hardening effect due to plastic deformation from the 
softening effect induced by damage evolution. Therefore, no softening effect appears 
explicitly in the material yield function. 
In this model, the damage evolution law was nonlinear in the accumulated plastic strain: 
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Pirondi and Bonora (2003) extended the formulation to the case of cyclic plastic loading 
according to the following hypotheses: 
i) Damage accumulates and its effect on material stiffness is active if and only if stress 
triaxiality (the ratio of mean stress, σm=1/3σkk, and the equivalent stress, σeq= (3/2σ´ij 
σ´ij)0.5) is positive, that is: 
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ii) Under compressive state of stress (i.e. 0/ <
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!! ) damage does not accumulate 
and its effects are inactive, so: 
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The complete set of constitutive equations can be written as follows: 
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The superscript “+” indicates quantities increasing only if triaxiality is positive. pl
eq!
+  is 

obtained by time integration of Eqn. (25). 
 
2.3 Cyclic yielding behaviour 
The cyclic hardening behaviour is described with the model of Chaboche (1989), which 
combines a nonlinear kinematic and isotropic hardening. An analytical relation with an 
initial yield stress, R0, and a saturation value, R∞, is applied for the isotropic flow stress, 
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and an extension of Ziegler's law with an additional recall-term for the evolution of 
backstress 
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where differently from linear kinematic hardening (Ziegler's law) R is not constant but 
comes from eqn. (28) as a function of plastic strain. This model allows to reproduce 
most of the features of the cyclic plastic behaviour such as Bauschinger effect, cyclic 
hardening or softening, ratchetting of strain under constant stress amplitude and 
relaxation of mean stress. 
 
3. EXPERIMENTS  
The material under consideration is a German low alloy steel 20MnMoNi55 (similar to 
A508 in the US designation). The specimens have been extracted from a homogenous 
piece of the bottom section of a nuclear pressure vessel. The material composition is 
given in Table 1. 
 



3.1 Tensile tests on Round Bars (RB) 
Tensile tests were performed according to the italian UNI 6380-68 standard 
prescriptions. with the following purposes: 
- Determination of the yield strength and hardening behaviour (true stress -- true 

strain curves) using Bridgman correction. 
- Verification of the micromechanical models.  
For the application of Bridgman correction, the profile of the neck was monitored 
during the test by digital image acquisition. The neck profile is a further option to verify 
the calibration of the models. In this case, necking should be forced to occur in the 
middle of the gauge length by introducing a local small diameter reduction. 
The specimen dimensions are shown in Fig. 1 for two different diameters, namely 5 and 
10mm. The tests were performed under displacement control. The measurement of the 
strain before necking was made with a 50mm gauge length extensometer. 
 
3.2 Tensile tests on Flat Rectangular Hourglass specimens (FRHG) 
The aim of this experiment was to evaluate tensile damage evolution and tune the 
parameters of the CDM model of Pirondi and Bonora (2003). The specimen is shown in 
Fig. 2. The slight hourglass shape was chosen to concentrate strain and therefore 
damage on a well determined section. The tests had to be run under displacement 
control. A series of partial unloadings was performed to evaluate the decrease of elastic 
modulus for increasing plastic strain, hence the damage as D = 1 - E/E0. The elastic 
modulus was evaluated at the minimum section by means of a strain gauge. Further 
details on the experimental procedure can be found in Bonora et al. (2004). 
 
3.3 Cyclic plasticity tests on cylindrical specimens (Damage Low Cycle, 
DLC) 
This test was aimed at characterizing the cyclic flow curve. The specimen dimensions 
were taken from the ASTM E 606 standard test method for strain-controlled fatigue 
testing, with the only modifications of: i) a shorter gauge length to prevent buckling due 
to high compression straining and ii) flattening of the end for mounting into the 
available flat wedge grips (Fig. 3). The experiments were strain-range controlled using a 
10mm gauge length extensometer. One specimen for each strain range was tested 
(companion samples method). A triangular waveshape symmetric cycle (Rε=-1) was 
imposed with a strain rate of 10-3s-1. 
 
3.4 Cyclic plasticity tests on Round Notch Bars (RNBs) 
 Cyclically loaded round notch tensile bars represent the reference tests to verify the 
predictive performance of micromechanical models under proportional loading 
conditions. Two different mechanical situations were investigated by testing specimens 
with the same diameter of the notched section (8mm) but notch radius of 2mm (higher 
triaxiality) and 10mm (lower triaxiality), respectively. Preliminary numerical 
investigations Bonora et al. (1996) showed that the stress triaxiality distribution across 
the minimum section depends on the notch radius/section diameter r/d ratio and on the 
hardening exponent of the material, but it is fairly unaffected by the deformation level. 
Besides, for a notch radius not smaller than 2 mm the plastic strain distribution can still 
be regarded as uniform. The RNB geometries tested are given in Figs. 4 (RNB2) and 5 
(RNB10). 



The tests were conducted in a servohydraulic testing machine under displacement-
controlled condition with a ratio of minimum to maximum displacement of -1 and a 
frequency of 0.004 Hz for notch radius R=2mm and 0.008 Hz for notch radius 
R=10mm. Five specimens for each notch radius were tested with different displacement 
range levels. The cycle amplitude was controlled by means of a 25mm-gauge length clip 
gauge placed across the notch. The change of the diameter in the notch was also 
monitored using a clip gauge. Load versus deflection hysteresis loops were recorded 
during the tests. 
 
4. PARAMETER CALIBRATION 
4.1 Hardening behaviour 
Tensile loading. Five RB specimens were tested for each diameter. The stress-strain 
data are characterized by a yield plateau followed by a moderate hardening (σu/σy ≅ 
1.28). From the tests, the tensile mechanical properties were evaluated as: σy = 472MPa, 
σu = 602MPa, εf = 22.8%. The elastic constants were assumed to be E = 204GPa and ν 
= 0.3, respectively. Monitoring of the necking phase by digital image acquisition 
allowed to calculate true stres-true strain data and to operate Bridgman correction as 
reported in Pugh (1970): 
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The cross section radius a has been determined from the images using a pixel-count 
algorithm while the calculation of the curvature radius ρ was performed after fitting the 
profile with a second-order polynomial. The results are shown in Fig.6. 
 
Cyclic loading. DLC specimens were tested at symmetric strain amplitudes  εa = Δε/2 = 
(εmax - εmin)/2 of 1.5, 2 and 2.5%, respectively. The corresponding stabilized cycles are 
shown in Fig. 7. The tips of the stabilized cycles are compared  in Fig. 8 with the 
corresponding peak values (obtained after N=2 cycles) and with the tensile stress-strain 
data. The cyclic behaviour is characterized by an initial rapid cyclic hardening followed 
by softening for all of the strain ranges tested, while a modest hardening with respect to 
the tensile behaviour is recorded only for εa = 2%. 
The cyclic yielding model parameters, namely R0, R∞, b, C, γ, have been inferred in 
different ways for the LPD ad PB models, respectively. In the case of the LPD model, 
since failure is modelled as a progressive shrinking of the yield surface due to the 
increase of void volume fraction with the numbers of cycles, the parameters have been 
determined from the first 10 loading cycles, where the material showed cyclic strain 
hardening. The underlying assumption was that the softening exhibited after the first 
cycles could be modelled as a result of damage (i.e. void volume fraction) 
accumulation. The parameters are tuned by comparing FE simulations with the 
experimental response at Δε=5%. The best fit was found with R0 = 396.6MPa, R∞ = 
471.5MPa, b = 8, C = 7500MPa, γ = 70.  
On the other hand, the formulation of the PB model does not separate the cyclic 
hardening or softening effect due to plastic deformation from the softening effect 
induced by damage evolution. The parameters were therefore tuned to reproduce the 
softening behaviour recorded experimentally. The results covering all of the strain 



ranges tested are R0 = 429.0MPa, R∞ = 387.5MPa, b = 0.1141, C = 11431MPa, γ = 128.9 
(see Figs. 9a-b). 
 
4.2 LPD model parameters 
The calibration was made with the objective to match the instant at which specimen´s 
failure was recorded during tensile tests on RBs. A trial-and-error procedure was used to 
meet the failure points, see also Bernauer and Brocks (2002). Since the number of 
model parameters is quite high, the choice was restricted based on the following 
considerations: 
i) The factors qi (i = 1-3) in the yield function were set to the well established values, 
that is q1 = 1.5, q2 = 1.0, q3 = q1

2 = 2.25. 
ii) Void nucleation was not accounted for by setting fN = 0. This is justified by the fact 
that this kind of steels typically contains a high fraction of weakly bonded MnS 
inclusions which act as void nucleation sites as soon as the yield stress is exceeded 
(Decamp et al. (1997)). The growth of such voids is then the prevailing damage 
mechanism. 
FE simulations of both 5 and 10mm diameter RBs were performed using isotropic 
hardening only with material behaviour calculated from tensile tests. A satisfying fit of 
experiments was found with f0 = 0.01, fc = 0.07, κ = 4.0. 
 
4.3 PB model parameters 
The parameters α, Dcr, D0, εf, εth of the PB model employed here were evaluated by 
fitting the results of tests on FRHG specimens from which the damage was evaluated 
from the decrease of stiffness, i.e. D = 1 - E/E0, and plotted as a function of plastic 
strain (Fig. 10). The damage accumulates fast in the early plastic deformation stage, 
showing an almost stepwise trend because of the presence of weakly bonded MnS 
inclusions. This behaviour has therefore been approximated by assuming an initial 
damage D0 = 0.15 and a threshold strain εth = 0.0213. The best fit was finally obtained 
with the set: α = 0.362, Dcr = 1, D0 = 0.15, εcr = 1.5, εth = 0.0213. From Fig. 6 a failure 
strain εf of about 1.2 can be inferred. A value of 1.5 of the critical strain εcr in the 
damage model is therefore justified since failure in tensile tests on RB occurred after a 
prominent necking phase, where a higher triaxiality and hence damage rate, develops. 
Further details on parameters calibration can be found in Bonora et al. (2004).  
The minimum requirement for model and parameter validation is that failure under 
tensile loading of different specimens can be correctly predicted. Therefore, tensile tests 
on RB have been compared with corresponding FE simulations with the PB model. The 
results are summarized in Fig 11, where it is shown that the instant of failure simulated 
falls within range found experimentally. In the case of the LPD model, this particular 
comparison is redundant, as the damage parameters have been calibrated using the tests 
on RBs. 
 
5. LIFETIME PREDICTIONS 
 
Leblond-Perrin-Devaux (LPD) model. Predictions of the cyclic plastic behaviour of 
RNBs were carried out and compared with the respective tests. For the sake of 
conciseness, only one test of a RNB with 2 mm notch radius and one with 10 mm notch 
radius were chosen for the comparison. The tests were run under a displacement range 
of ±0.1 mm in case of the sharp notch, ±0.2 mm in case of the smooth notch. For this 



particular choice, the average plastic strain accumulation per cycle on the minimum 
section of the specimen varies in from 1.5% to 5%, depending on notch radius and 
position (centre or notch root). The test specimens showed a macrocrack after 83 
(RNB2) and 40 cycles (RNB10), respectively. At this stage, the tests were stopped to be 
able to perform metallographic inspection. Figure 12 depicts the macroscopic cyclic 
force-displacement behaviour of the two bars. Generally, for both specimen geometries, 
the resulting force is increasing in the first load cycles, followed by a number of stable 
loops. Initiation of a macroscopic crack is preceded by a fast decrease in maximum 
load.  
For a better understanding of both, experimental and simulation results, the following 
representation related to cyclic stress-strain-curves is used. For each cycle, maximum 
and minimum loads are recorded and plotted as a function of the number of cycles, see 
figures 13 and 14. Generally, the fundamental features in macroscopic behaviour can be 
caught in the simulation: hardening during the first cycles, followed by a decrease of 
maximum and minimum load due to increasing damage. The difference between tensile 
and compressive peak loads is due initially to contraction-expansion of the cross-
section, later it is amplified by increasing degradation and damage. However, using the 
model parameters calibrated by tensile tests on RBs, the predicted lifetime is too high. 
This is manifested by the two curves in figures 13 and 14 labelled “#1”, showing almost 
constant loads from the 20th cycle on. Obviously, damage evolution is too weak to cause 
a sufficient decrease of the peak loads.  
The prediction can be improved be the introduction of the strain controlled void 
nucleation, Eqn. (11). The curves in figures 13 and 14 labelled “#2” are obtained by 
simulations using the parameters f0 = 0.005, fc = 0.2, κ = 2.0, fN = 0.08, εN = 3.0, sN 
=1.0. The predicted lifetime for the RNB2 is the same as in the experiment, for RNB10 
failure occurs in the 23rd cycle. On the other hand, the improvement in cyclic life 
prediction obtained with set “#2” occurred at the expense of the displacement to failure 
in the simulation of RB tests, which is about 15% lower than with set “#1”. 
An interesting feature of the simulations explains the different consequences with 
respect to the global specimen behavior. The simulations of RNB2 using the parameter 
set #1 showed an accumulation of f*at the centre of the notched section, whereas 
cracking in the experiments starts at the specimens surface. The introduction of the 
nucleation term, which is sensitive to plastic strain, allows to displace the “damage hot 
spot” towards the notch root, where failure is detected to begin experimentally. In the 
case of 2 mm notch radius, the strain concentration obtained in the FE analysis is strong 
enough to promote failure at the notch root, see fig. 15a. The corresponding evolution of 
the damage variable at two different loci in the specimen, namely the middle and the 
notch root, are displayed in fig. 16. Note, that while using parameter set #2 in the case 
of the sharp notch, damage is generally higher in the notch root compared to the 
specimen´s centre. For 10 mm notch radius, however, the locus of maximum damage 
remains in the specimen´s center, see fig. 15b. For this type of specimen, triaxiality and 
plastic strain are maximum in the centre of the specimen, and therefore damage 
accumulates at this position, see fig. 16. Exact prediction of the number of cycles to 
failure could not be achieved for both notched specimens tested. Despite the fact that for 
the smooth notched bar the number of cycles is underpredicted, the simulation using 
parameter set #2 captures the specimens’ macroscopic and microscopic response. As 
experimental results with respect to fatigue life generally show a large scatter, it is not  
substantial to meet the exact number for one distinct test. More interesting, however, is 



the fact that the maximum loads are not met and this holds for both damage models 
envisaged here, LPD and PB (see following section). A reason for this can be found in 
tha fact that strains in the RNB cross section spans from 1.5 to 5% while the material 
behaviour parameters were tuned on DLC experimentson a range from 1.5 to 2.5%. 
 
Pirondi-Bonora (PB) model. According to this model, damage manifests its effects 
with a decrease of stiffness. In Fig. 17 the experimental and simulated load-
displacement cycles are shown. The number of cycles represented corresponds to: i) in 
the simulations, the point at which convergence is lost due to attainment of critical 
damage; ii) in the experiments, the point at which a macrocrack manifests at the surface. 
It can be noticed also that the stiffness change is not active while reloading from 
compression and, in the case of 10mm notch radius, softening is recovered upon a 
certain negative displacement, that is when all the elements along the cross section 
recover the load carrying capability according to Eqn. (25). While the overall behaviour 
is matched, the decrease of stiffness is quite overestimated. A damage rate larger then 
the LPD model could be expected since in this case there is not a negative damage rate 
associated with a compressive state of stress and the effect of hydrostatic stress 
relaxation due to porosity is not present. This fact of course is reflected by the predicted 
lifetimes. In the case of the 2mm notch radius, about 30 cycles are needed to inititiate a 
crack in the experiments, while the prediction is 12. In the lower triaxiality case, i.e. 
10mm notch radius, the FE prediction is 22 cycles to failure, while experimentally it 
was greater than 100 cycles.  
An explanation can be found by examining the damage distribution at mesocrack 
initiation, i.e. when the first element reaches Dcr at all of the integration points, Fig. 18. 
In the case of the 2mm notch radius the critical damage point is localized just beneath 
the notch root. In this case, the higher plastic strain accumulation at the notch root 
prevails on the higher triaxiality at the centre, as found also in Pirondi and Bonora 
(2003). On the other hand, in the lower triaxiality geometry (10mm radius) damage is 
always localized at the centre, since plastic strain is fairly constant across the section. It 
seems therefore that the acceleration imparted by the triaxiality in the model is in this 
case too strong with respect to the experimental evidence. 
 
Comparison of LPD and PB models. The two models are compared in terms of the 
predicted degradation of mechanical properties. The mechanical properties to be 
monitored were chosen according to the way damage exploits its effects in the two 
models. In the case of LPD an increase of the void volume fraction causes the shrinkage 
of the yield surface and in turn the reduction of the load with respect to the undamaged 
condition, while an increase of damage in PB reduces the elastic modulus, hence the 
global stiffness of the specimen. Therefore, peak load, Pmax, and global (elastic) 
stiffness, K=dP/d(Δl), were determined as a function of the number of cycles, N, for 
LPD and PB, respectively. The superscripts '+' and '-' indicate values taken on the 
tensile and compressive parts of the cycle, respectively. To compare the results, Pmax 
and K were normalized with respect to the reference (undamaged) values. The reference 
value of peak load was identified as the maximum one recorded, neglecting the damage 
accumulated so far. Anyway since the initial increase of peak load is very rapid this was 
considered as a good approximation. As far as the concern is to compare the way 
damage accumulates during the experimental or predicted lifetime and not its time (or 
strain) evolution, the number of cycles can also be normalized for experimental and 



simulated values by the experimental, Nf, and simulated, Nf-FEM, numbers of cycles to 
failure, respectively.  
The results are shown in Figs. 19 (LPD) and 20 (PB). The LPD model predicts a 
smoother degradation than the PB model except close to failure, where there is an 
abrupt change in the degradation trend. Both models give a lower, if null, degradation 
under compression, that is qualitatively in agreement with the experiments. Finally, the 
LPD model predicts generally a degradation lower than the experiment, while the 
situation is the opposite for the PB model. 
 
Metallographic inspection. A metallographic inspection was conducted after testing to 
check for the development of damage along the cross section of the specimens. One 
specimen for each notch radius was sectioned longitudinally. Both specimens were 
subjected to a +/- 0.1mm displacement cycles. The experiments were stopped prior to 
final failure of the respective specimens. The section of the 2mm notch radius specimen 
shows a macrocrack already initiated at the notch root (Fig. 21). This macrocrack is 
surrounded by a number of voids originating from inclusions. Cracks developing from 
inclusions ahead of the notch root are also visible. On the other hand, any instance of 
this kind was not found in the centre of the specimen, in agreement with the prediction 
of the two models of a lower level of damage at this location (see Figs. 15 and 18).  
A sectioned 10mm notch radius specimen is shown in Fig. 22. Macrocracks did not yet 
develop in this case but, differently from the sharper notched specimen, coalescence of 
voids started from broken particles could be detected both at notch root and centre. 
The reason for this is of course the more uniform strain distribution with respect to the 
2mm notch radius case. The small strain concentration at the root is probably 
compensated, from the point of view of the damage mechanism, by a slightly higher 
stress triaxiality at the centre. A higher damage concentration at the centre, as predicted 
by both the models, could not be found at least at this stage of the failure process. 
 
6. CONCLUSIONS 
Two different micromechanical models based on either porosity evolution (LPD model) 
or CDM (PB model), respectively, have been used to simulate macroscopic response 
and local damage evolution of RNB specimens subjected to cyclic plastic loading. 
The predictions of the models agreed with the experiments to a different extent 
depending on the variable considered for the comparison and on the notch radius (i.e 
level of triaxiality) of the specimen. In particular, with the help of a strong nucleation 
rate the LPD model can match the number of cycles to failure better than the PB model, 
which tend to overestimate the damage rate and, therefore predict lifes shorter than the 
experiments. On the other hand, at least for the higher triaxiality/cyclic plastic strain 
case (2mm notch radius), the PB model indicated failure location at the notch root, 
which is in agreement with the one detected experimentally. The LPD model instead, 
predicts always the failure to start at the interior of the specimen. 
The models have therefore to be improved to simulate properly all of the conditions 
considered. The work will be therefore extended to the investigation of the damage 
micromechanism in relationship with the evolution of damage indicators, such as 
porosity, elastic modulus and cyclic stress range. 
 



REFERENCES 
McClintock, F.A., A criterion for ductile fracture by the growth of holes, J. of Applied 
Mechanics, 1968, 35, 363-371. 
Rice, J. R. and Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial 
stress fields. J. Mech. Phys. Solids 17, 201-217. 
Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and 
growth: Part I - yield criteria and flow rules for porous ductile media. J. Eng. Mater. 
Technol.-Trans. ASME 99, 2-15. 
Needleman, A. and Rice, J. R. Limits to ductility set by plastic flow localization. D. P. 
Koistinen. Mechanics of sheet metal forming. 237-78. New York, Plenum Press.  
Needleman, A. and Tvergaard, V. (1984). An analysis of ductile rupture in notched 
bars. J. Mech. Phys. Solids 32, 461-490. 
Rousselier, G. (1987). Ductile fracture models and their potential in local approach of 
fracture. Nucl. Eng. Design 105, 97-111. 
Tvergaard, V. and Niordson, C., 2004. Non local plasticity effects on interaction of 
different size voids, International Journal of Plasticity, 20, pp. 107-120. 
Acharya, A., Bassani, J.L., 2000. Lattice incompatibility and a gradient theory of crystal 
plasticity. Journal of the Mechanics Physics of Solids, 48, 1565–1595. 
J. Wen, Y. Huang, K. C. Hwang, C. Liu and M. Li (2005). The modified Gurson model 
accounting for the void size effect, International Journal of Plasticity, 21, 381-395. 
Zhenhuan Li and Minsheng Huang (2005). Combined effects of void shape and void 
size– oblate spheroidal microvoid embedded in infinite non-linear solid, International 
Journal of Plasticity, 21, 625-650. 
Minsheng Huang and Zhenhuan Li (2005). Size effects on stress concentration induced 
by a prolate ellipsoidal particle and void nucleation mechanism, International Journal of 
Plasticity, 21, 1568-1590. 
Schacht, T., Untermann, N., and Steck, E., 2003. The influence of crystallographic 
orientation on the deformation behavior of single crystals containing microvoids, 
International Journal of Plasticity, 19, 1605-1626 
Bonfoh., N., Lipinski, P., Carmasol, A., and Tiem, S., 2004. Micromechanical modeling 
of ductile damage of polycrystalline materials with heterogeneous particles, 
International Journal of Plasticity, 20, pp. 85-106. 
Xia, L. and Shih, C.F., 1995. Ductile Crack Growth-I. A numerical study using 
computational cells with microstructurally-based length scales, J. Mech. Phys. Solids, 
43, (2), pp. 233-259. 
Brocks, W.; Hao, S., and Steglich, D. Micromechanical modelling of the damage and 
toughness behaviour of nodular cast iron. Journal De Physique III. 1996; 6(colloque 
C6):43-56. 
Mahnken, R., 2002. Theoretical, numerical and identification aspects of a new model 
class for ductile damage, International Journal of Plasticity, 18, pp.801-831. 
Besson, J., Steglich, D., and Brocks, W., 2003. Modeling of plane strain ductile rupture, 
International Journal of Plasticity, 19, pp. 1517-1541. 
Negre, P.; Steglich, D., and Brocks, W. Crack extension in aluminium welds: a 
numerical approach using the Gurson-Tvergaard-Needleman model. Eng. Fract. Mech. 
2004; 71(16-17):2365-2383. 
Huang Yuan and Jian Chen, (2004). Comparison of computational predictions of 
material failure using nonlocal damage models, International Journal of Solids and 
Structures, 41, 1021-1037. 



Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture. Journal 
of Engineering Materials and Technology 107, 83-89. 
Chandrakanth, S. and Pandey, P. C. (1993). A new ductile damage evolution model. Int. 
J. Fracture 60, R73-R76. 
Bonora, N., (1997a). A Non-Linear CDM Model for Ductile Failure, Engineering 
Fracture Mechanics 58, 11-28 
Bonora, N. (1997b). On the effect of triaxial state of stress on ductility using nonlinear 
CDM model, International Journal of Fracture 88, 359-371. 
Tai, H.W., and Yang, B.X., 1986. A new microvoid-damage model for ductile fracture, 
Engn. Frac. Mech., 25, (3), pp. 377-384. 
Tai, H.W., 1990. Plastic damage and ductile fracture in mild steels, Engineering 
Fracture Mechanics, 36, (4), pp. 853-880. 
Z. Lin, C. Lingcang, L. Yinglei, P. Jianxiang, J. Fuqian and C. Dongquan, (2004). 
Simplified model for prediction of dynamic damage and fracture of ductile materials, 
International Journal of Solids and Structures, 41, 7063-7074. 
N. Bonora, D. Gentile, A. Pirondi and G. Newaz (2005). Ductile damage evolution 
under triaxial state of stress: theory and experiments, International Journal of Plasticity, 
21, 981-1007 
Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. Adv. Appl. Mech., 33, 
295–361. 
Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient 
plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 475–487.  
Bammann, D.J., Mosher, D., Hughes, D.A., Moody, N.R., Dawson, P.R., 1999. Using 
spatial gradients to model localization phenomena. Sandia National Laboratories 
Report, SAND99- 8588, Albuquerque, New Mexico 87185 and Livermore, CA. 
Brünig, M., 2003. An anisotropic ductile damage model based on irreversible 
thermodynamics, International Journal of Plasticity, 19, pp.1679-1713. 
Michael Brünig and Sabine Ricci, (2005). Nonlocal continuum theory of anisotropically 
damaged metals, International Journal of Plasticity, 21, 1346-1382. 
A. Menzel, M. Ekh, K. Runesson and P. Steinmann (2005). A framework for 
multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage, 
International Journal of Plasticity, 21, 397-434. 
Voyidajis, G., Abu Al-Arub, R.K., Palazzotto, A. N., 2004. Thermodynamic framework 
for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for 
dynamic localization problems using gradient theory, International Journal of Plasticity, 
20, pp.981-1038. 
Lammer, H., and Tsamakis, Ch. (2000). Discussion of coupled elastoplasticity and 
damage constitutive equations for small and finite deformations, International Journal of 
Plasticity, 16, 495-523. 
Klesnil, M., Lukaš, P. (1980). Fatigue of metallic materials, Elsevier Science 
Publishers, Amsterdam. 
Polak, J. (1991), Cyclic plasticity and low cycle fatigue of metals. Elsevier Science 
Publishers, Amsterdam. 
Leblond, J.-B., Perrin, G., and Devaux, J. (1995). An improved Gurson-type model for 
hardenable ductile metals. Eur. J. Mech. A-Solids 14, 499-527. 
Besson, J. and Guillemer-Neel, C. (2003). An extension of the Green and Gurson 
models to kinematic hardening. Mechanics of Materials 35, 1-18. 
Cedergren, J., Melin, S. and Lidström, P. (2004). Numerical modelling of P/M steel bars 



subjected to fatigue loading using an extended Gurson model, European Journal of 
Mechanics A/Solids 23, 899-908. 
Pirondi, A. and Bonora, N. (2003). Modeling ductile damage under fully reversed 
cycling, Computational Materials Science 26, 129–141. 
Xiao, Y. (2004). A multi-mechanism damage coupling model, International Journal of 
Fatigue 26, 1241-1250. 
Yang, X. and Nassar, S. (2005). Constitutive modelling of time-dependent cyclic 
straining for solder alloy 63Sn-37Pb, Mechanics of Materials, 37, 801-814. 
Gomez, J. and Basaran, C. (2005). A thermodynamics based damage mechanics 
constitutive model for low cycle fatigue analysis of microelectronics solder joints 
incorporating size effects, International Journal of Solids and Structures, 42, 3744-3772. 
Bernauer, G. and Brocks, W. (2002). Micro-Mechanical Modelling of Ductile Damage 
and Tearing - Results of a European Numerical Round Robin. Fatigue Fract. Eng. 
Mater. Struct. 25, 363-384. 
Bonora, N., Gentile, D. and Pirondi, A. (2004). Identification of the parameters of a 
non-linear continuum damage mechanics model for ductile failure in metals, Journal of 
Strain Analysis for Engineering Design 39, 639-651. 
Lemaitre, J. (1996). A Course on Damage Mechanics, Springer-Verlag, Berlin. 
Hughes T.J.R., Winget J. (1980). Finite Rotation Effects in Numerical Integration of 
Rate Constitutive Equations Arising in Large - Deformation Analysis. Int. J. Num. 
Meth. Engng 15, 1862-1867. 
Aravas, N. (1987). On the numerical integration of a class of pressure-dependent 
plasticity models. Int. J. Num. Meth. Engng. 24, 1395-1416. 
Chu, C. C. and Needleman, A. (1980). Void nucleation effects in biaxially stretched 
sheets. J. Eng. Mater. Technol.-Trans. ASME 102, 249-256. 
Tvergaard, V. and Needleman, A. (1984). Analysis of the cup-cone fracture in a round 
tensile bar. Acta metall. 32, 157-169. 
Mühlich, U. and Brocks, W. (2003). On the numerical integration of a class of pressure-
dependent plasticity models including kinematic hardening. Comp. Mech. 31, 479-488. 
Chaboche, J. L. (1989). Constitutive equations for cyclic plasticity and cyclic 
viscoplasticity. Int. J. Plast. 5, 247-302. 
Bonora, N., Gentile, D. and Iacoviello, F., (1996). Triassialità e rottura duttile in provini 
cilindrici con intaglio circonferenziale, Proceedings of XII Italian Group of Fracture 
Annual Conference - IGF12, Parma, June, pp. 93-102. 
Pugh H.Ll.D. (1970). The Mechanical Behavior of Materials Under Pressure, Elsevier 
Science Publishers, 1970. 
Decamp, K., Bauvineau, L., Besson, J., Pineau, A., (1997). Size and geometry effect on 
ductile rupture of notched bars in a C-Mn steel : experiments and modelling. Int. J. 
Fract. 88, 1–18. 
Steglich, D.; Pirondi, A.; Bonora, N., and Brocks, W. (2005). Micromechanical 
modelling of cyclic plasticity incorporating damage. Int. J. Solids Struct., 42, 337-351. 



 
d [mm]  L [mm] Lc [mm] D  l [mm] 
5 73.2 28 M8 15 
10 146.4 56 M16 30 

Fig. 1: RB specimen for tensile testing. 
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Fig. 2: FRHG specimen geometry and dimensions 
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Fig. 3: DLC specimen for strain-controlled cyclic plasticity testing. 
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Fig. 4: RNB2 specimen geometry and dimensions 
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Fig. 5: RNB10 specimen geometry and dimensions. 
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Fig. 6: Bridgman stress-true strain experimental data (all specimens) and curve fit. 
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Fig.7: stabilized cycles for different  strain amplitudes. 
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Fig. 8: cyclic vs. tensile behaviour. 
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   (a)             (b) 
Fig. 9: a)evolution of the elastic range size as function of accumulated plastic strain.; b) 
backstress evolution during a cycle after stabilization  
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Fig. 10: evolution of damage as a function of plastic strain. 



 
Fig. 11: comparison between RB tensile tests and prediction of the PB model. 
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Fig. 12. experimental load-displacement cycles taken for (a) RNB2 and (b) RNB10. 
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Fig. 13. evolution of peak load in tension and compression of RNB2 as a function of the 
loading cycles (LPD model). 
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the loading cycles (LPD model). 
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Fig. 15. contours of constant damage variable, f*, in (a) RNB2 and (b) RNB10 at failure 
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 (a) (b) 
Fig. 17: experimental vs. simulated load-displacement cycle with the PB model: a) 
RNB2; b) RNB10. 

 

   
 (a) (b) 
Fig. 18: predicted distribution of damage D at mesocrack initiation: a) RNB2; b) 
RNB10. 
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   (a)      (b) 
Fig. 19: experimental and LPD-predicted peak load degradation: a) RNB2; b) RNB10. 
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   (a)      (b) 

Fig. 20: experimental and PB-predicted stiffness degradation: a) RNB2; b) RNB10.



   
Fig. 21: metallographic section of a 2mm notch radius specimen.
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Fig. 22: metallographic section of a 2mm notch radius specimen. 
 
 
 
 
 
 
 
 
Table 1 - Material composition for 20MnMoNi55 steel. 

C Si Mn P S Cr Mo Ni Cu 
0.19 0.2 1.29 0.007 0.008 0.12 0.53 0.8 0.11 
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