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Abstract

In this paper a new collocation technique for constructing time-dependent absorbing

boundary conditions (ABCs) applicable to elastic wave motion is devised. The ap-

proach makes use of plane waves which satisfy the governing equations of motion to

construct the absorbing boundary conditions. The plane waves are adjusted so that they

can copewith the satisfaction of radiation boundary conditions. The proposed technique

offers some advantages and exhibits the following features: it is easy to implement; its

approximation scheme is local in space and time and thus it does not deal with any

routine schemes such as Fourier and Laplace transform, making the method computa-

tionally less demanding; as the employed basis functions used to construct the absorb-

ing boundary condition are residual-free, it requires neither any differential operator

(to approximate the wave dispersion relation), nor any auxiliary variables; it constructs

Dirichlet-type ABCs and hence no derivatives of the field variables are required for the

imposition of radiation conditions. In this study, we apply the proposed technique to

the solution procedure of a collocation approach based on the finite point method which

proceeds in time by an explicit velocity-Verlet algorithm. It contributes to developing a

consistent meshless framework for the solution of unbounded elastodynamic problems

in time domain. We also apply the proposed method to a standard finite element solver.
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The performance of the method in solution of some 2D examples is examined. We shall

show that the method exhibits appropriate results, conserves the energy almost exactly,

and it performs stably in time even in the case of long-term computations.

Keywords: unbounded domains, absorbing boundary conditions, elastic wave

propagation, time domain, meshless method, finite element method

1. Introduction

The transient elastic wave propagation problems in infinite media are encountered in

various fields of natural science and engineering [1]. In particular, they find several ap-

plications in soil-structure interaction analysis [2, 3] and in the simulation of earthquake

ground motion [4]. The main challenge for this type of problems lies in the infinity of5

the media. The governing equations of the wave motion are posed on a spatial domain

of infinite extent; moreover, the complexity of these problems precludes analytical solu-

tions. The need for realistic models often compels development of a numerical solution

on a bounded problem domain.

The standard numerical methods, whether mesh-based such as the finite element10

method (FEM) or meshless such as the finite difference method (FDM), are basically

developed for bounded problem domains. The common way of tackling this problem

numerically, is first to truncate the unbounded problem domain at an artificial bound-

ary with a certain distance away from the region of interest. The region of interest

is referred to as the interior domain; on the other hand, the truncated part is referred15

to as the exterior domain. The artificial boundary should be placed at a distance far

enough so that it surrounds all the scatterers and sources of energy. In order to render

the problem well-posed, it is essential to devise an appropriate mechanical model, nu-

merical technique or absorbing boundary condition (ABC) at the truncating boundary

so that the effects of the exterior region (on the interior region) can be taken into ac-20

count precisely. In this sense, the technique must be capable of absorbing the incident

and outgoing waves suitably through which the energy can be radiated into the exterior

domain without reflecting back. The numerical solution of the bounded domain can

represent that of the original unbounded domain (within the interior region) provided
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that accurate and reliable boundary conditions are imposed on the artificial boundary.25

Although during the last four decades a considerable number of techniques for treat-

ing wave propagation in unbounded domains have been proposed, this topic is still an

open issue for the scientists [5–8]. It turns out that in some cases it is too difficult to

develop a scheme that is sufficiently accurate, stable and computationally efficient and,

at the same time, can be applied in conjunction with standard numerical techniques.30

This is more pronounced for elastodynamic problems which is the main focus of the

present study [9]. Also, elastic wave problems are much more complicated than scalar

wave problems in terms of the radiation condition satisfaction. This is due to the fact

that elastodynamic problems are vectorial and involve more than one kind of wave [10].

To this respect, in the literature, the scalar wave propagation have been studied more35

widely.

In the literature of elastic wave propagation, the first attempt for developing anABC,

dates back to 1969 when the classical viscous boundary condition was introduced by

Lysmer and Kuhlemeyer [11]. Since then, there has been an increasing interest in the

development of newmethods, and it is still an open topic of research in the field of wave40

motion [5, 12]. The classical ABC introduced by Engquist and Majda [13] is among

the pioneering works in the literature. They proposed a method based on the local ap-

proximation of the radiation condition of increasing order (local in space and time).

However, as this method involves one-way boundary operators (i.e. only along a direc-

tion normal to the boundary), it cannot avoid spurious reflections due to various wave45

types with different angles of incidence. The important feature of the classical ABC is

that it is local in space and time. It is simple to implement in the finite element method

(FEM); moreover, it is computationally cheap as long as a low order of approximation

is considered (i.e. 1st or 2nd order) [14].

In general, boundary conditions that are local in space and time involve only a few50

points near the boundary within a small time-window [15]; yet they are not as accurate

as the global approaches such as the methods based on the boundary element method

(BEM) [16]. However, transient analysis of unbounded media using global approaches

requires extensive computational resources [14]. To this respect, during the past decade,

local methods have been receiving an increasing attention by the scientists. Classify-55
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ing the broad spectrum of available methods is beyond the scope of this work. The

interested reader may refer to the comprehensive reviews in [17–19].

Many of the approaches are developed for time-harmonic exterior problems; for

example see [20–23]. However, material non-linearity that may occur in wave motion,

can be handled much more conveniently when a problem is solved in the time-domain.60

In the present study, the focus is on developing a technique through which the radiation

condition can be satisfied directly in the time-domain. Over the past decade, the two

most prominent schemes have been those based on the high-order absorbing boundary

condition (high-order ABC)method [17] and those based on the perfectly matched layer

(PML) method [24]. They are still actively being developed by the researchers; see for65

instance [25–27].

PML was originally introduced for electromagnetics by Bèrenger in 1994 [28].

Since then there have been several related reformulations of PML for other wave-type

equations such as elastodynamics; for instance, see the study in [29]. A PML layer

should be expanded towards the exterior domain, with a finite thickness, and it should70

be placed adjacent the truncating boundary of the problem. The governing equations of

wave are artificially modified inside the layer. This modification is devised so that when

waves travel inside the layer, they decay exponentially. In the continuous level, there

is a perfect match between the PML and the interior domain through which outgoing

waves, with various angles of incidence, produce zero reflection. PML introduces an ar-75

tificial damping through a complex change of spatial coordinates for the wave equation

in Fourier (or Laplace) space [30]. These features guarantee excellent performance of

PML in theory. However, sometimes this performance might be hampered, when dis-

cretization comes into play. This lies in the sensitivity of PML to the discretization and

its dependency on the introduction of ad-hoc stretching and damping profiles [9].80

The first high-order ABC was proposed by Collino in 1993 [31] and then the idea

was followed by other researchers; for a survey on this topic, one may refer to [10, 17].

The high-order ABC is local in space and time which is also the case for the classical

ABC of Engquist and Majda [13] and Bayiss and Turkel [32]. However, unlike the

classical ABC, it does not involve high-order derivatives of the main field variables.85

In this way, the classical ABC, in practice, can be implemented up to the second order
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only; while, high-order ABC can be implemented up to a desired order. The high-order

derivatives of the field variables are eliminated by introducing auxiliary variables on

the truncating boundary. The methods based on high-order ABC can be implemented

to any degree of accuracy, which depends on the convergence of the Padè expansion90

[33].

One of the restrictions of methods based on the high-order ABC is that in their

design, it is not possible to include any normal derivative of an auxiliary variable on

the boundary. This is due to the fact that the auxiliary variables are discretized only

on the boundary. Therefore, it is only allowed to deal with tangential and temporal95

derivatives of the auxiliary variables. It should be remarked here that the elimination

of normal derivatives of auxiliary variables is cumbersome and entails a lot of algebra

in elastodynamics [9].

Each of the two schemes, high-order ABC and PML, has relative advantages. PML

can usually be implemented in existing codes easier than high-order ABC. A notable100

disadvantage of PML, in comparison to high-order ABC, is its convergence that is not

associated with a specific notion of convergence [34]. In this sense, sometimes to cap-

ture a proper accuracy by PML, it is necessary to widen the corresponding layers exten-

sively which contributes to a considerable computational cost with respect to high-order

ABC. On the other hand, high-order ABC should be applied to a fixed boundary rather105

than a layer. In high-order ABC by increasing the order P of the ABC the numerical

solution can get closer to the exact solution up to discretization error. In high-order

ABC the overhead increases linearly with P . On the basis of the studies conducted in

[34], most often methods based on high-order ABC exhibit proper performance at the

discrete level, provided that they have been appropriately designed at the continuous110

level. However, this is not generally true for PML. For more details and discussion on

the comparison between these methods one may refer to [35, 36]. More recently, in

the literature, there is a tendency to design new approaches that share some similarities

with the features of both high-order ABC and PML, yet enjoy some of the advantages

that each of them lacks; for instance see [34].115

The present study aims to devise a new technique to produce ABCs suitable for

transient propagation of elastic waves in unbounded domains. The work is inspired by
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previous work of authors in [37] about a new way of constructing ABCs for transient

scalar wave propagation problems. Here we attempt to achieve the same features for the

case of elastodynamics. The proposed method is similar to the classical ABC method120

in terms of the simple implementation. Similar to the strategy carried out for the meth-

ods based on the classical ABC and the high-order ABC, we truncate the domain at

an absorbing boundary. The ABCs are constructed by means of a simple collocation

approach which is local in space and time, eliminating any routines such as Fourier

and Laplace transform. The collocation approach makes use of a least square approx-125

imation over a sub-domain (so called cloud) centered at each points of the truncating

boundary. This is similar to that of the meshless finite point method (FPM) [38, 39]. In

the present study, for the sake of consistency, the solution strategy of the interior region

is carried out by a simple explicit FPM solver. Similar to [37, 39], the time marching

is performed using a velocity-Verlet scheme. The present collocation approach, at the130

absorbing boundary, approximates the solution using a series of exponential basis func-

tions (EBFs) that satisfy the strong-form of the governing equations in space and time.

EBFs are obtained in the form of plane waves whose fluctuations and directions can be

adjusted and controlled such that they radiate the energy towards the exterior domain.

The way of satisfying the ABCs in time is designed so that the present method135

does not involve directly in the discretization scheme of the interior region. As a conse-

quence, it can be conveniently applied to equip the existing standard numerical methods

(such as FPM or FEM) for the satisfaction of the radiation boundary condition directly

in the time-domain. We shall show the application of the present approach to a standard

FEM solver in Sec. 4.140

Likewise, the method can absorb the travelling waves with a direction normal to the

absorbing boundary aswell as waveswith other angles of incidence. In this sense, waves

with frequency and angle of incidence equal or near used plane waves are absorbed to a

much higher degree. It should be remarked that in [37] a comprehensive investigation

into comparison of the proposed strategy with PML and the classical 1st order ABC in145

terms of accuracy and efficiency (for the scalar wave motion) is conducted.

One of the appealing features of the present method is that the constructed ABCs

are Dirichlet- (or first-) type and thus they can be easily imposed to the corresponding
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Figure 1: A general representation of an unbounded domain.

points of the absorbing boundary through a simple updating algorithm. In other words

we patch the numerical solution of the near field with the semi-analytical solution of150

the far field, obtained by employing a series of plane waves. Such a feature makes the

approach free from any spatial derivatives, even for the main field variables. We shall

show that the method is capable of producing results with a suitable accuracy, and it

exhibits a stable behavior even in the case of long-term computations.

The outline of the paper is as follows. In Sec. 2 the mathematical and physical155

descriptions of the problem are expressed. The solution strategy in different parts of

the domain is presented in Sec. 3 and the way of applying the discretized formulation

and forming the final system of equations are discussed. Application of the proposed

method to a standard FEM solver is briefly discussed in Sec. 4. Sec. 5 explains some

implementation aspects of the current work. In Sec. 6 the performance of the approach160

in solution of some 2D problems is examined. The final remarks made throughout the

paper are summarized in Sec. 7.

2. Problem description

Let us consider a generic linear elastic unbounded domain of wave propagation Ω

surrounding some scatterers (including baffles and sources) as shown in Fig. 1. We165

assume that the medium is homogenous and isotropic. Therefore, for any point of the
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Figure 2: Specification of the computational domain and the artificial boundary.

domain x ∈ Ω, with coordinates x = ⟨x, y⟩with respect to the global coordinate system,

the governing equation of motion at time t can be written as follows:

STDSu(x, t) + b(x, t) = cd u̇(x, t) + �ü(x, t), x ∈ Ω (1)

where u is the displacement vector with ⟨u, v⟩ components respectively along the x and

y directions in the global coordinate system. u̇, ü and b are the vectors of velocity,170

acceleration and body forces, respectively. � is the density, and cd denotes the damping

coefficient. S is the well-known small strain operator, defined as:

ST =
⎡

⎢

⎢

⎣

)∕)x 0 )∕)y

0 )∕)y )∕)x

⎤

⎥

⎥

⎦

(2)

and D is the matrix of material constants; for a plane stress problem we have:

D = E
1 − �2

⎡

⎢

⎢

⎢

⎢

⎣

1 � 0

� 1 0

0 0 (1 − �)∕2

⎤

⎥

⎥

⎥

⎥

⎦

(3)

and for a plane strain problem we have:

D = E
(1 + �)(1 − 2�)

⎡

⎢

⎢

⎢

⎢

⎣

1 − � � 0

� 1 − � 0

0 0 (1 − 2�)∕2

⎤

⎥

⎥

⎥

⎥

⎦

(4)
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where � is Poisson’s ratio and E is Young’s modulus. The strain and stress are defined175

(in Voigt notation) as:

" = Su, � = D" = DSu (5)

respectively. On the surface of scatterers two types of Dirichlet (constrained displace-

ments) and Neumann (traction) conditions must be satisfied as:

ñDSu(x, t) = t∗(x, t), x ∈ ΓN

u(x, t) = u∗(x, t), x ∈ ΓD
(6)

where ΓD and ΓN are Dirichlet and Neumann boundaries where the prescribed bound-

ary displacements u∗ and tractions t∗ have to be imposed. Also ñ is a matrix containing180

nx and ny values which are components of an outward unit vector normal to the bound-

ary, n:

ñ =
⎡

⎢

⎢

⎣

nx 0 ny
0 ny nx

⎤

⎥

⎥

⎦

(7)

Moreover, the initial displacement and velocity conditions of the problem are:

u(x, 0) = u0(x)

u̇(x, 0) = u̇0(x)
(8)

where u0 and u̇0 are the given vectors of the initial conditions, respectively.

The main challenging part of the solution associated with Eq. (1) is the difficulty185

to cope with the infinity of the medium. To this respect, the application of standard

numerical methods requires discretization of a very large portion of the unbounded

domain Ω, yet this makes the approach inefficient and computationally expensive.

An appropriate strategy is to restrict the domain by specifying a computational do-

main, ΩN , and truncating the exterior domain ΩF using an artificial boundary Γ∞ (see190

Fig. 2). This strategy converts the solution domain to a bounded one which includes

the parts whose solution is mainly of concern. Γ∞ is also referred to as the absorbing

boundary. ΩN is referred to as the near field where the solution is sought, while ΩF is

called the far field or the exterior domain.

We assume that the location of Γ∞ is set so that the entire support of the body forces195

b as well as the region of damping in Eq. (1), initial conditions u0 and u̇0 in Eq. (8),
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and scatterers are all contained in ΩN . Due to these assumptions, on Γ∞ and in ΩF the

following governing equation, holds:

STDSu(x, t) = �ü(x, t), x ∈ ΩF (9)

It is remarkable that the exterior domain is initially assumed to be at rest.

To obtain a well-posed bounded problem domain, we introduce a simple way to200

construct time-dependent boundary conditions being imposed to the points at Γ∞. In

this study, the constructed ABCs are of Dirichlet type. The values of ABCs should be

obtained such that the propagating waves crossing Γ∞ can be transmitted towards the

exterior domain, and no reflection back to the near field takes place. In other words, the

values of ABCs should be determined so that the effects of the far field on the near field,205

at the truncating boundary, are taken into account properly. In this way, the solution of

the bounded domain can conform suitably to that of the original domain within the

sought part.

In the subsequent section, the approximation strategy for the near field and the far

field are described in detail. We begin with the FPM and extend the approach to a210

standard FEM solver.

3. The solution strategy

The first part of the solution regards the approximation scheme in the near field.

It pertains to employing the FPM approximation in space and proceeding in time with

an explicit time integration scheme pursuing the study in [39]. The second part, corre-215

sponds to the construction of the ABCs for elastodynamic problems; which is the main

goal of the present study. This part is tackled by a collocation technique consistent with

FPM.

3.1. Near field

3.1.1. The FPM scheme220

We begin with the solution recalling the weighted least square (WLS) scheme em-

ployed for FPM in the pioneer study of [38]; the reader may consult the reference
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Figure 3: Discretization of the computational domain.

for more details. Let us represent the solution domain by a collection of nodes xi,

i = 1, 2,…, scattered within ΩN and on the boundaries (see Fig. 3). Accordingly, the

time is discretized into instants as t0, t1,… , tn, tn+1,…; we consider a constant time step225

Δt = tn+1− tn for the discretization in time. At each node a subdomain, so called cloud,

is centered. Ωi indicates the neighboring nodes of xi, i.e., the finite region over which

the unknown field variables are approximated. To each cloudΩi a local coordinate sys-

tem with origin at xi is assigned; the local axes can be parallel to those of the global

coordinate system. For simplicity, we use hereafter the same notation for local and230

global coordinates. An unknown field variable, for instance u(x, tn) (the displacement

along the x-axis of the local coordinate system at time instant tn) can be approximated

locally in space by ûn(x) as:

ûn(x) =
∑

k
ankpk(x) = p

T(x)an (10)

recalling that here x = ⟨x, y⟩ stands for the position with respect to the local coordi-

nate system. In Eq. (10), p(x) denotes a vector consisting of m number of monomial235

bases with corresponding unknown coefficients collected in vector an; the unknown

coefficients must be determined in terms of the nodal values of the neighboring nodes.

Considering a complete set of monomials, for a 2D problem one can choose the bases
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pk up to second order as:

p = ⟨1, x, y, x2, xy, y2⟩, m = 6 (11)

To proceed with the WLS scheme for cloudΩi, it is required to sample the approximate240

function of field variable in Eq. (10) at the neighboring nodes (including xi) as:

Un =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

uni
⋮

unj
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ûn(0)

⋮

ûn(xij)

⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pT(0)

⋮

pT(xij)

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

an =Man, xij = xj − xi, xj ∈ Ωi (12)

whereM and an respectively denote the moment matrix and the unknown coefficients

associated with the local approximation of Ωi. Considering ni as the number of neigh-

boring nodes of Ωi and assuming that ni > m, the moment matrix is no longer a square

matrix; in turn, the solution of the above system of equations, for having the unknown245

coefficients in terms of the nodal values, entails a WLS procedure. The approximation

requires an extra procedure to minimize a norm J defined by:

J =
∑

j
w(xij)

(

unj − û
n(xij)

)2
=
∑

j
w(xij)

(

unj − p
T(xij)an

)2
(13)

where w plays the role of a weight function that must be selected properly; the above

summation runs over all the neighboring nodes. In this study, as suggested in [40], the

weight function is taken as:250

w(xij) =
1 − exp

(

64 − 16 ||
|

xj−xi
�

|

|

|

2
)

1 − exp(64)
(14)

in which � is the distance of the most remote neighboring node from xi; when a circular

shape is assumed for the cloud, it denotes the radius. To this end, minimization of J in

Eq. (13), with respect to the unknown coefficients an, results in the following system of

equations:

Aan = BUn (15)

where A is a matrix defined as:255

A =
∑

j
w(xij)p(xij)pT(xij) (16)
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and B is:

B =
[

w(0)p(0) ⋯ w(xij)p(xij) ⋯
]

(17)

in which the number of columns is equal to the number of neighboring nodes ni. Ac-

cording to Eq. (15), an can be found by:

an = A−1BUn (18)

Consequently, the approximate function of the field variable ûn(x) can be expressed,

in terms of the nodal values of the neighboring nodes of Ωi, by substituting an from260

Eq. (18) for Eq. (10) as:

ûn(x) = pT(x)A−1BUn =
∑

j
Nj(x)unj (19)

whereNj(x) is the shape function of approximation corresponding to neighboring node

xj .

3.1.2. Discretization of governing equations

For each cloud Ωi, the unknown field variables (displacements along x and y direc-265

tions of the local coordinate system) can be approximated simultaneously by ûn(x) =

⟨ûn(x), v̂n(x)⟩. The components of ûn(x) can be found in terms of the nodal values of

the neighboring nodes as described for the derivation of Eq. (19), and we have:

ûn(x) = N(x)Ūn (20)

where N(x) is a matrix containing the shape functions of the cloud and Ūn is a vector

collecting the nodal values of the neighboring nodes (displacements) as follow:270

N(x) =
⎛

⎜

⎜

⎝

Ni(x) 0 ⋯ Nj(x) 0 ⋯

0 Ni(x) ⋯ 0 Nj(x) ⋯

⎞

⎟

⎟

⎠

, Ūn = ⟨uni , v
n
i ,… , unj , v

n
j ,…⟩

(21)

For the nodes of the near field, the strong form of the governing equations can be dis-

cretized inserting equation Eq. (20) into Eq. (1), then we have:

STDSN |

|

|

xi Ū
n + bni = cd u̇

n
i + �ü

n
i , xi ∈ ΩN (22)
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where bni = b(xi, tn). In a similar manner, in view of Eq. (6), for the nodes on the

Neumann boundary we have:

ñDSNT ||
|

xi Ū
n = t∗(xi, tn), xi ∈ ΓN (23)

and for the nodes on the Dirichlet boundary one can write:275

N(0)Ūn = u∗(xi, tn), xi ∈ ΓD (24)

It should be pointed out that the above procedure can be extended and applied to bound-

ary nodes to which mixed type of boundary conditions (Dirichlet-Neumann) are im-

posed.

3.1.3. Time integration scheme

In this study, the time marching is performed through an explicit velocity-Verlet280

scheme. Having known the displacement, velocity and acceleration vectors of node xi
at time tn, (i.e. uni , u̇

n
i , ü

n
i ), one can proceed to the next time step by:

u̇n+1∕2i = u̇ni +
Δt
2
üni

un+1i = uni + Δtu̇
n+1∕2
i

u̇n+1i = u̇n+1∕2i + Δt
2
ün+1i

(25)

Therefore, the displacements and velocities at time tn+1 = tn + Δt can be explicitly

obtained, in terms of the values at time tn by:

un+1i = uni + Δtu̇
n
i +

Δt2
2
üni

u̇n+1i = u̇ni +
Δt
2

(

üni + ü
n+1
i

)

(26)

It should be pointed out, having calculated un+1i from the first equation, ün+1 can be285

directly calculated from the discretized form of the governing equation in Eq. (22). The

time step Δt must be less than a critical time step Δtc as follows:

Δtc =
Δmin
cmax

(27)

where Δmin is the minimum size of grid in the spatial discretization, and cmax denotes

the maximum speed of sound in the material. Our experiences in the previous studies
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demonstrate that the velocity-Verlet scheme can be considered as a robust and reliable290

approach even when the solution procedure is consisting of two different numerical ap-

proaches [41–44]. For the nodes on the boundaries (Dirichlet, Neumann and artificial

boundaries) the updating of nodal values at each time step is performed by the solu-

tion of a final system of equations that will be explained in Sec. 5. For the nodes on

the artificial boundary Γ∞, to find their contributing components in the final system295

of equations, it is required to employ an extra collocation approach described in the

subsequent subsection.

3.2. Far field

On the absorbing boundary Γ∞, the solution is approximated by means of basis

functions that satisfy the governing equation (Eq. (9)) in space and time. The way to300

obtain these residual-free basis functions, to adjust them for satisfaction of the radiation

conditions, and to employ them in a collocation approach are described in the following

subsections.

3.2.1. Residual-free exponential basis functions (EBFs)

Let us consider vector f (x, t) as a basis function that satisfies the governing equation305

Eq. (9); the general form of f with unknown parameters can be written as:

f =  exp(i�x + i�y + i!t),  (�, �, !) =
⎛

⎜

⎜

⎝

 u
 v

⎞

⎟

⎟

⎠

(28)

where i =
√

−1, �, �, ! ∈ ℝ, and  plays the role of an eigenvector whose size is

identical to the number of displacement components. Replacement of the basis function

into Eq. (9) concludes:

Q exp(i�x + i�y + i!t) = 0 (29)

where Q is a matrix as:310

Q =
⎡

⎢

⎢

⎣

−D1�2 −D3�2 + �!2 −(D2 +D3)��

−(D2 +D3)�� −D3�2 −D1�2 + �!2

⎤

⎥

⎥

⎦

(30)
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Since we seek non-trivial solutions for Eq. (29) the following characteristics equation

must hold:

�2�2D21 + �
4D1D3 − �!2

(

�2 + �2
)

(D1 +D3)+

�4D1D3 − �2�2D22 − 2�
2�2D2D3 + �2!4 = 0 (31)

Moreover,  must be obtained, in terms of the exponents, so that we have:

 ∈ null(Q) (32)

in which null(Q) represents the null space of Q. From the general form of the basis

function in Eq. (28) it can be inferred that ! stands for the frequency corresponding to

the temporal part, while � and � denote the fluctuation of the spatial part and thus they

control the wave direction. To simplify the expression given in Eq. (31) and to get a315

better understanding of different influencing parameters we assume:

(�, �) = �(cos�, sin�), � ∈ ℝ, −� < � ≤ � (33)

Hereinafter, we pursue the formulation for plane strain condition; however, the exten-

sion to plane stress condition is straightforward. Substitution of Eq. (33) in Eq. (31)

leads to four roots for ! in terms of � and �; moreover, each solution is associated with

an eigenvector as:320

!P = ±�cP ,  P =
⎛

⎜

⎜

⎝

cos�

sin�

⎞

⎟

⎟

⎠

!S = ±�cS ,  S =
⎛

⎜

⎜

⎝

− sin�

cos�

⎞

⎟

⎟

⎠

(34)

where cP =
√

�+2�
� , cS =

√

�
� , � and � are Lamè coefficients. On the basis of Eq. (34)

and Eq. (28), two types of basis functions (modes or plane waves) can be concluded:

fP =  P exp
(

i�(x cos� + y sin�) ± i!P t
)

fS =  S exp
(

i�(x cos� + y sin�) ± i!S t
)

(35)

In fact, the first type of modes corresponds to the dilatation or pressure (P) waves and

the second one corresponds to the distortional or shear (S) waves; to get more insight

16



Figure 4: Schematic representation of a cloud on the absorbing boundary; the x-axis of the local coordinate

system is aligned with the unit normal vector.

about the decomposition of elastodynamic waves the reader may refer to [45]. Eq. (35)325

considers all possible directions of propagating plane waves; however, for the approx-

imation scheme of the nodes on Γ∞ only the modes whose direction of propagation is

towards the exterior domain must be taken into consideration.

Let us consider a portion of a generic solution domain near its absorbing boundary

as shown in Fig. 4. In the discretized domain, the nodes inΩN and on Γ∞ are indicated330

by filled and empty circles, respectively. The local coordinate system is oriented so that

the x-axis is aligned with the normal vector at the absorbing boundary; furthermore, the

positive direction points the exterior domain. This orientation is chosen to have a better

control over the direction of the propagating waves. We proceed with the local approx-

imation, within the cloud, applying a set of basis functions as introduced in Eq. (35):335
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û∞(x, t) =
∑

k

∑

l

[

a′k,l
⎛

⎜

⎜

⎝

cos�k
sin�k

⎞

⎟

⎟

⎠

exp
(

i�l(�k − cP t)
)

+

b′k,l
⎛

⎜

⎜

⎝

− sin�k
cos�k

⎞

⎟

⎟

⎠

exp
(

i�l(�k − cS t)
)

+

c′k,l
⎛

⎜

⎜

⎝

cos�k
sin�k

⎞

⎟

⎟

⎠

exp
(

i�l�k + cP t)
)

+

d′k,l
⎛

⎜

⎜

⎝

− sin�k
cos�k

⎞

⎟

⎟

⎠

exp
(

i�l(�k + cS t)
)

]

(36)

where �k = (x cos�k + y sin�k); a′k,l, b
′
k,l, c

′
k,l and d

′
k,l are unknown coefficients.

Moreover, we select �k and �l form two symmetric discrete intervals as:

�k ∈ Δ�[−1, 1], Δ� ≥ 0

�l ∈ Δ�[−1, 1], Δ� ≥ 0
(37)

In fact, Δ� and Δ� are two influential parameters that determine the direction and fre-

quency of the propagating plane waves. As discussed earlier, the right hand side of

Eq. (36) includes the general form of all possible modes of the solution. It is notable

that taking �k = 0 (or close to that) leads to plane waves whose direction is aligned

with the x-axis. Since the positive x-direction is taken towards the exterior domain, the

first two terms of the series in Eq. (36) represent outgoing waves, while the last two

terms represent incoming waves. Therefore, the incoming plane waves must vanish to

prevent reflections of energy from the boundary towards the near field. To this end, by

taking c′k,l = d
′
k,l = 0 the approximation function of displacements in Eq. (36) reduces

to:

û∞(x, t) =
∑

k

∑

l

[

a′k,l
⎛

⎜

⎜

⎝

cos�k
sin�k

⎞

⎟

⎟

⎠

exp
(

i�l(�k − cP t)
)

+

b′k,l
⎛

⎜

⎜

⎝

− sin�k
cos�k

⎞

⎟

⎟

⎠

exp
(

i�l(�k − cS t)
)

]

(38)
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Figure 5: The propagation region of outgoing waves for different values of �.

and it can be stated in the polar coordinate system, ⟨x, y⟩ = r⟨cos �, sin �⟩ and −� <

� ≤ � as:

û∞(r, �) =
∑

k

∑

l

[

a′k,l
⎛

⎜

⎜

⎝

cos�k
sin�k

⎞

⎟

⎟

⎠

exp
(

i�l(r cos � cos�k + r sin � sin�k − cP t)
)

+

b′k,l
⎛

⎜

⎜

⎝

− sin�k
cos�k

⎞

⎟

⎟

⎠

exp
(

i�l(r cos � cos�k + r sin � sin�k − cS t)
)

=
∑

k

∑

l

[

a′k,l
⎛

⎜

⎜

⎝

cos�k
sin�k

⎞

⎟

⎟

⎠

exp
(

i�l(r cos(� − �k) − cP t)
)

+

b′k,l
⎛

⎜

⎜

⎝

− sin�k
cos�k

⎞

⎟

⎟

⎠

exp
(

i�l(r cos(� − �k) − cS t)
)

]

(39)

Since cP , cS and r are all positive, we can conclude that the terms of the above se-

ries play the role of outgoing waves (towards the exterior domain) provided that the340

following condition is observed:

cos
(

�k − �
)

> 0 (40)

which concludes:

−�
2
+ �k < � <

�
2
+ �k (41)

In fact, the above region indicates a half plane perpendicular to a normal vector

making an angle equal to �k with the x-axis of the local coordinate system. Fig. 5 illus-
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trates that the half plane rotates by changing the value of �k. On the basis of Eq. (37),345

we choose a set of values for �k within an interval [−Δ�,Δ�]. Therefore, the plane

waves of the series in Eq. (38) construct an approximate solution that guides the waves

crossing Γ∞ (incident from the near field) towards their corresponding half planes; in

this way, the radiation condition can be satisfied. As a consequence, thanks to the con-

sidered orientation for the local coordinate system, a small angle close to zero for Δ�350

must be selected to guarantee the absorption of energy and prevent spurious reflection

of waves from the boundary. We shall discuss about the implementation aspects as well

as selection of the parameters in the following sections.

3.2.2. The approximation scheme of far field

The employed approximation scheme of Γ∞ is quite similar to that of FPM. Let355

us again consider a cloud, centered at xi, shown in Fig. 4 as a generic cloud on Γ∞.

Within the cloud, the approximate function of displacement, introduced in Eq. (36),

can be rewritten in the following form:

û∞(x, t) =
⎛

⎜

⎜

⎝

û∞
v̂∞

⎞

⎟

⎟

⎠

(x, t) =
∑

k
a∞,kp∞,k(x, t) (42)

where p∞,k denotes the k-th basis function with the corresponding unknown coefficient

a∞,k; it should be recalled that coordinates x are measured with respect to the local ori-360

ented coordinate system. In this way, we approximate the velocity separately employing

a set of basis functions, the first time derivatives of the basis functions in Eq. (42), as:

̂̇u∞(x, t) =
⎛

⎜

⎜

⎝

̂̇u∞
̂̇v∞

⎞

⎟

⎟

⎠

(x, t) =
∑

k
b∞,kṗ∞,k(x, t) (43)

where b∞,k denotes the corresponding unknown coefficient. Since the employed col-

location approach is local in space and time, at each time step we reset the time and

assume that the approximation is valid for a local time interval t ∈ [0,Δt]. In this way,365

we interpolate the field variables (displacements) and their first derivations in time (ve-

locities), at n-th time step, by:

ûn∞(x, t) = P
T
∞(x, t)a

n
∞ (44)
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and consequently:
̂̇un∞(x, t) = Ṗ

T
∞(x, t)b

n
∞ (45)

where P∞ and an∞ are:

PT∞(x, t) =
[

p∞,1 p∞,2 ⋯ p∞,m∞
]

(x, t)

an∞ = ⟨an1, a
n
2,… , anm∞⟩

(46)

and similarly we have:370

ṖT∞(x, t) =
[

ṗ∞,1 ṗ∞,2 ⋯ ṗ∞,m∞
]

(x, t)

bn∞ = ⟨bn1, b
n
2,… , bnm∞⟩

(47)

The summations in Eqs. (44) and (45) run over m∞ basis functions; in fact, Eqs. (44)

and (45) are the counterparts of Eq. (10) in the FPM approximation scheme.

Hereinafter, the goal is to find the unknown coefficients in terms of the nodal values

(including displacements and velocities). Similar to Eq. (12), we sample the approx-

imate function in Eqs. (44) and (45) at the neighboring nodes (recalling that at the375

beginning of n-th step we set t = 0) as:

Ḡn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

gni
⋮

gnj
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Tuni
⋮

Tunj
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

PT∞(0, 0)

⋮

PT∞(x
′
ij , 0)

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

an∞ =M∞an∞, x′ij = Txij , xj ∈ Ωi (48)

and accordingly:

̄̇Gn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ġni
⋮

ġnj
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Tu̇ni
⋮

Tu̇nj
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ṖT∞(0, 0)

⋮

ṖT∞(x
′
ij , 0)

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

bn∞ = Ṁ∞bn∞ (49)

whereT is a rotation matrix, using for transformation from the global coordinate system

to the local one, as:

T =
⎡

⎢

⎢

⎣

nx ny
−ny nx

⎤

⎥

⎥

⎦

(50)
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Assuming ni < m∞, on the basis of Eqs. (48) and (48), the unknown coefficients an∞380

and bn∞ can be found respectively in terms of Ḡn and ̄̇Gn by:

an∞ =M+
∞Ḡ

n (51)

and:

bn∞ = Ṁ+
∞
̇̄Gn (52)

where the superscript ‘+’ stands for the Moor-Penrose generalized inverse; the above

equations are the counterparts of Eq. (18). By substitution of an∞ and bn∞ from Eqs. (51)

and (52) for Eqs. (44) and (45) respectively we have:385

ûn∞(x, t) = P
T
∞(x, t)M

+
∞Ḡ

n = N∞(x, t)Ḡn (53)

and:
̂̇un∞(x, t) = Ṗ

T
∞(x, t)Ṁ

+
∞
̄̇Gn = Ṅ∞(x, t) ̄̇Gn (54)

where N∞ and Ṅ∞ are two matrices including all the shape functions of the local ap-

proximation. Let us assume that at the beginning of n-th step the values of Ḡn and ̄̇Gn

are known, since we are dealing with an explicit time marching in the near field. Ac-

cording to Eqs. (53) and Eq. (54), one can find the nodal values of xi at the next time390

step, with respect to the local coordinate system, by:

gn+1i = N∞(0,Δt)Ḡn (55)

and:

ġn+1i = Ṅ∞(0,Δt) ̄̇Gn (56)

Finally, the nodal values of xi with respect to the orientation of the global coordinate

system at time instant tn+1 can be found by:

un+1i = T−1gn+1i (57)

and:395

u̇n+1i = T−1ġn+1i (58)

The terms of the above equation will be a part of the final system of equations explained

in the subsequent section.
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In the solution procedure, the required terms in the approximation of clouds are

basically the terms N(x) in Eq. (20) as well as N∞(0,Δt) and Ṅ∞(0,Δt) in Eqs. (55)

and (56). It is worthwhile to mention that these terms can be calculated once at the400

beginning of the simulation. This lies in the fact that moment matricesM in Eq. (12),

M∞ and Ṁ∞ in Eqs. (48) and Eq. (49) are obtained independent of time; this feature

culminates in a significant reduction in the computational cost.

3.3. Final system of equations

Here we discuss the formation of the final system of equations making use of the405

discretized equations developed earlier. Let K, Ũ, and F be respectively the coefficient

matrix, the vector of displacements, and the vector of known values for the global sys-

tem of equations. Therefore, at n-th time step the solver can advance to the next time

step by the solution of the following linear system of equations:

KŨn+1 = Fn (59)

According to the position of a node, the corresponding rows of K and Fn should be410

filled out. For a node xi in the near field, in view of Eq. (22) and Eq. (25), we have:

un+1i = uni +
(

Δt −
cd
2�
Δt2

)

u̇ni +
Δt2
2�

(

STDSN |

|

|

xi Ū
n + bni

)

, xi ∈ ΩN (60)

The left hand side of the above equation should be arranged in the corresponding rows

of K, and the right hand side, consisting of known values at the beginning of n-th step,

should be appropriately placed into the corresponding arrays ofFn. The same procedure

applies to nodes on Neumann and Dirichlet boundaries; on the basis of Eqs. (23) and415

(24), we have:

ñDSNT ||
|

xi Ū
n+1 = t∗(xi, tn+1), xi ∈ ΓN

N(0)Ūn+1 = u∗(xi, tn+1), xi ∈ ΓD
(61)

For nodes on the absorbing boundary the following equation, based on Eq. (57), applies:

un+1i = T−1N∞(0,Δt)Ḡn, xi ∈ Γ∞ (62)
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Having updated the displacements, the solver can update the velocities considering

Eq. (22) and Eq. (25) for nodes in the near field as:420

u̇n+1i = 1
1 + Δtcd

2�

(

u̇ni +
Δt
2
üni +

Δt
2�
STDSN |

|

|

xi Ū
n+1 + Δt

2�
bn+1i

)

, xi ∈ ΩN (63)

and, in view of Eq. (58), for nodes on the absorbing boundary we have:

u̇n+1i = T−1Ṅ∞(0,Δt) ̄̇Gn, xi ∈ Γ∞ (64)

It should be pointed out the major part of the final system of equations is formed by

Eq. (60) and Eq. (62) which are uncoupled equations; therefore, the system in Eq. (59)

can be condensed to a much smaller one containing only the equations of nodes close

to Dirichlet and Neumann boundaries; the reader may refer to [39] for more details.425

Remark 1

It is worth noting that the approach described is applicable to 3D problems as well. To

do this, one must consider a 3D wave basis of the form  exp(i�x+ i�y+ i
z+ i!t) in

place of Eq. (28). The characteristic equation as well as  can be obtained as before.430

The satisfaction of the radiation condition should be done in half planes, perpendicular

to the x-axis of the local coordinate system. This entails further considerations that will

be the topic of future studies.

435

4. Application to a FEM solver

In this section, we discuss the applicability of the proposed method to a standard

FEM solver, since FEM is a very popular solution method for many structural prob-

lems involving infinite domains. It is worth noting that we have equipped FEM with a

strategy similar to that of the proposed method for scalar wave propagation problems440

[37]. To complete our discussion in this paper, we briefly devise a similar approach for

unbounded elastodynamic problems. Assuming that at the n-th step the solver has the
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nodal values of the system including the displacements, the velocities and the acceler-

ations (i.e. Ũn, ̃̇Un and ̃̈Un), one may use the discrete governing equation of FEM, i.e.:

445

M̃ ̃̈Un+1 + C̃ ̃̇Un+1 + K̃Ũn+1 = F̃n+1 (65)

to advance to n + 1-th step using the following velocity-Verlet equations:

Ũn+1 = Ũn + Δt ̃̇Un + Δt
2

2
̃̈Un (66)

̃̇Un+1 =
(

I + Δt
2
M̃−1C̃

)−1 [ ̃̇Un + Δt
2

(

̃̈Un + M̃−1 [F̃n+1 − K̃Ũn+1
]

)]

(67)

In the above equations, M̃, C̃ and K̃ are the usual mass, damping and stiffness matrices

of FEM. A step-by-step procedure for the solution of unbounded elastodynamic prob-

lems in FEM is depicted in Alg. 1. It is noteworthy that the proposed method does not450

involve directly in the discretization scheme of FEM.

5. Numerical implementation

The numerical implementation of the present method is a straightforward task as the

original formulation of FPM (and FEM) is preserved and a consistent formulation for

the radiative boundaries is proposed. Hereinafter, we focus on the FPM, but the reader455

may note similarities to the FEM implementation, as described in the previous section.

The implementation mainly pertains to representation of the solution domain by dis-

tribution of nodes on the computational domain, specifying the radiative boundaries,

allocation of a cloud to each node, construction of shape functions at the beginning of

the simulation, and advancing in time by the procedure described in Sec. 3.3.460

The local approximation in each cloud must be taken over a sufficient number of

neighboring nodes. In the Sec. 6, all the examples are solved using a uniform grid

for domain discretization and taking a circular region with radius of � = 3Δx for each

cloud; hereΔx stands for the grid spacing. A complete set of polynomial basis functions

up to second order is considered for the WLS approximation scheme of the clouds in465

the near field. To select a proper set of EBFs for the approximation scheme of the far

field, we use the recommendations in [46].
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Algorithm 1 The procedure for the FEM solution of unbounded elastodynamic prob-

lems.
1: Specify the computational domain, ΩN
2: Discretize the computational domain using a standard FEM mesh

3: Construct the standard FEM stiffness, damping and mass matrices, K̃, C̃ and M̃

4: Identify nodes on the absorbing boundaries, Γ∞
5: for all nodes xi on Γ∞ do

6: Build the cloud Ωi, i.e. find nodes xj such that ‖xj − xi‖ ≤ �

7: Calculate and store N∞(0,Δt) and Ṅ∞(0,Δt) for Ωi using Eqs. (55) and (56)

8: end for

9: Initialize Ũ0 and ̃̇U0 from the initial conditions

10: n← 1

11: repeat

12: t← nΔt

13: Calculate Ũn+1 using Eq. (66)

14: for all nodes xi on Γ∞ do

15: Update Ũn+1i using Eq. (57)

16: end for

17: Calculate ̃̇Un+1 using Eq. (67)

18: for all nodes xi on Γ∞ do

19: Update ̃̇Un+1i using Eq. (58)

20: end for

21: n← n + 1

22: until t = T
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In the present study, in line with the description given in Eq. (41) and Fig. 5, �k is

selected from a discrete range (symmetric and with regular subdivisions) as in Eq. (37).

In all examples, we make use of 5 angles for �; furthermore, we take Δ� = �∕8 as our470

experiences have shown that it is an optimal selection to transmit the arriving waves at

the boundary towards the exterior domain.

The other parameter is �l in Eq. (33) that influences the fluctuation of plane waves

in space and time. As described earlier this parameter is also selected form a discrete

interval, as in Eq. (37), with regular subdivisions. For proper selection of Δ�, inspired475

by the study conducted in [47, 48], we look into the well-known sampling theorem in

the field of signal processing [49]. In a nutshell, on the basis of the sampling theorem

a signal (band limited) can be fully reconstructed provided that it is sampled at a rate

at least twice the highest frequency content of the signal. To this respect, in the present

method Δ� is the maximum value of frequency for the spatial part of plane waves.480

Consequently, the maximum values of frequency for the temporal parts for pressure

and shear waves are Δ�cP and Δ�cS , respectively (see Eq. (34)). Let Δx and Δtc be

the space between sampling points (in space and time), hence the maximum proper

value for Δ� can be found as follows:

0 < Δ� < min
(

�
Δx

, �
cSΔtc

, �
cPΔtc

)

(68)

Since cP > cS , combination of the above equation and Eq. (27) leads to:485

0 < Δ� < �
Δx

(69)

in which Δmin and cmax in Eq. (27) is taken equal to Δx and cP .

The proposed methods was implemented in Julia. Julia is a free, open source, high-

level, general-purpose programming language designed for high performance com-

puting and simplicity of use [50]. Julia has several add-on packages, making avail-

able to the user a broad range of algorithms. We have, for example, employed the490

NearestNeighbors package to accelerate the process of finding the neighboring nodes

to specify the clouds. This package is based on a k-d tree, which reduces the compu-

tational cost of finding neighbors from (N2) to (N logN) in which N is the num-

ber of nodes in the domain. See [51] for more details. Also, to avoid calculating the
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Moore–Penrose pseudo-inverses explicitly, we have chosen a technique described in495

[52], where we employ the backslash (‘\’) operator in Julia to calculate the product of

the pseudo-inverse of a matrix and a vector / matrix.

It is worth noting that while the formulation here is presented using complex num-

bers, the whole solution can be easily done using real numbers. This is conveniently

accomplished using the well-known Euler’s formula. This makes the implementation500

of the method easier in the existing codes, as some libraries used in the codes are avail-

able for real numbers only. The developed code also uses this technique, despite the

fact that Julia seamlessly supports complex numbers.

6. Numerical examples

This section is devoted to scrutinize the performance of the proposed approach by505

solving some numerical examples. The examples are performed with the same set of

parameters (for the absorption of energy) as described in Sec. 5 and are discretized

through a Cartesian equally spaced grid of nodes.

In the examples, the wave motion is generated by prescribing initial values (dis-

placement or velocity) for the system. The body force and the damping coefficient in510

Eq. (1) are taken equal to zero. Inspired by other studies about elastic wave propagation

[10, 53], the accuracy and stability of the numerical solution is evaluated by calculating

the following expression numerically:

Π(t) = 1
2 ∫ΩN

"T�dΩ + 1
2 ∫ΩN

�u̇Tu̇dΩ (70)

where Π is the total mechanical energy in the near field. In fact, the evaluation of accu-

racy at the level of energy is a proper choice since it is concluded form an integration515

over spatial and time derivatives of the field variables in the whole computational do-

main. It should be pointed out that the examples are set up in a dimensionless system.

6.1. Example 1: wave motion in an unbounded domain

Part A: FPM solution

The purpose in this example is to check the performance of the present method520

in the case of a 2D unbounded problem domain. The material properties are � = 1,
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Figure 6: The initial condition in Example 1; the figure shows the displacement along the x-axis, u, taking

Δx = 0.004.

E = 10 000 and � = 0.3. We consider a square region x ∈ (−0.5, 0.5) × (−0.5, 0.5) as

the near field and the corresponding artificial boundary is placed at the borders; i.e., the

four sides of the square. The domain is excited by prescribing an initial displacement

(in the form of a truncated Gaussian bell shape) centered at ⟨0, 0⟩ to the system along525

both the x and y axes as:

u0(x) = v0(x) = exp
[

−200
(

x2 + y2
)]

for
√

x2 + y2 ≤ 1
4

(71)

The contour plot of the initial condition, displacement along the x-axis, is depicted in

Fig. 6.

To get a better understanding of the accuracy and validate the results, we consider

the solution of an extended bounded domain as the reference solution. We take a square530

region x ∈ [−6, 6]×[−6, 6] as the extended domain, which is discretized into 2 253 001

nodes with a regular spacing equal to Δx = 0.004. The extended domain is excited by

the same initial conditions described in Eq. (71). Moreover, a homogenous Neumann

condition (traction free) for the boundaries of the extended domain is taken into account.

For the spatial discretization of proposedmodel, two different grid sizesΔx = 0.004535

andΔx = 0.01 are employed which results in 63 001 and 10 201 nodes, respectively. To

proceed in time, we consider a time increment ofΔt = 5×10−6. The wave motion in the

extended domain is taken as the reference solution for a time duration T = 0.015; the
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wave front does not reach to the borders of the extended domain in this time duration.

Therefore the calculations are performed over 3000 time steps.540

In Fig. 7, by plotting the contours of displacement along the x-axis at six different

time instants, the propagation of the pulse is presented. We show the results of the ex-

tended domain only within the computational domain of the present model, hence the

results can be easily compared. The results indicate that by time t = 0.00375 although

the wave has crossed the border, it keeps propagating with a shape similar to that of the545

reference solution. By time t = 0.01 there is a good agreement between the solution

obtained by the present model and the reference one. At the last time instant, t = 0.015,

the reference solution indicates that majority of the pulse has already left the domain.

Moreover, the solution obtained by the present model reveals that there is no signifi-

cant spurious propagating waves back to the computational domain from the absorbing550

boundaries, as long as the grid is fine enough. The results, corresponding to the last

time instant, illustrate that the magnitude range of the remaining waves is very small

(in comparison to the pulse magnitude at t = 0, see Fig. 6) and no accountable reflec-

tions from the border can be observed when Δx = 0.004. As a consequence applying a

finer grid culminates in less spurious reflections and a higher level of accuracy.555

For further evaluation and getting more insight into the accuracy, the variation

of energy for both models, in view of Eq. (70), is presented in Fig. 8. Recall that

the integration for both models is done over the near field of the present model, x ∈

(−0.5, 0.5)×(−0.5, 0.5). To check the stability, the calculation of energy for the present

approach is done up to 10 000 steps. It should be pointed out that the energy is normal-560

ized with respect to the energy of the system at the beginning of the simulation, Π0. It

can be inferred that as time goes by, the energy is dissipating from the computational

domain of the present model monotonically (i.e. dΠ∕dt ≤ 0) having an excellent match

with the reference solution. In fact, the obtained results for energy approve the con-

clusions made for the results in Fig. 7. Meanwhile, the trend of energy dissipation is565

captured so that no instability, due to long-term computations, occurs.

For further investigation, we check the convergence of the present model to the

reference solution. Fig. 9 illustrates the variation of absolute difference between the

normalized energy obtained by the present model and that of the reference solution in
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Reference solution Present method (Δx = 0.004) Present method (Δx = 0.01)
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Figure 7: The results obtained for the propagation of pulse at different time instants in Example 1, Part A;

the figure shows the contour of displacement along the x-axis, u, for Δx = 0.004 and Δx = 0.01.
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Figure 8: The variation of energy obtained by two models in Example 1, Part A; Δx = 0.004.

time. The normalization is again done with respect to Π0 = Π0ref, the energy of the cor-570

responding extended model at the beginning of the simulation. The energy difference

is calculated by:

ΔΠ = |

|

Πref − Π|| (72)

where Πref and Π correspond to the energy of the reference solution and the present

model, respectively. The results in Fig. 9 elucidate, quantitatively, that making use of a

finer grid size for the model contributes to a higher accuracy. To check the convergence575

rate of the approach, we define L2 error norm of energy, e, as:

e =

√

√

√

√

∑

n
(

Πnref − Π
n
)2

∑

n(Π
n
ref)

2
(73)

where Πn = Π(tn), and the above summation runs over the number of steps; in this

study 3000 steps is taken into account. The obtained results of the convergence study

are reported in Table 1. It again approves the convergent behavior of the approach

similar to the conclusion made for Fig. 9.580

To sum up, the proposed absorbing technique performs well in time, exhibits suit-

able results with a proper accuracy (at the level of energy), and also preserves a stable

behavior as the simulator progresses in time.
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Figure 9: The variation of the normalized energy difference in time using different sizes of grid spacing in

Example 1, Part A.

Table 1: The convergence study in Example 1, Part A.

Δx Error norm, e

0.010 0.00515067

0.004 0.00193391
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Part B: FEM solution

To check the application of the proposed method to a standard FEM solver, we solve585

the same problem as in Part A with FEM. The computational domain, taken the same

size as Part A, is discretized with a Cartesian mesh of bilinear quadrilateral elements,

with the same size as the grid spacing, Δx in previous part. For the reference solution,

we employ an extended domain as in Part A, on which the problem is solved using an

standard FEM solver. Both solvers use the velocity-Verlet algorithm as referred to in590

Alg. 1. To make a better comparison with the available methods in the literature, we

solve the problem using the standard 1st order ABC method [54].

Here we report the difference in the mechanical energy of the system between the

proposed method and the 1st order ABC method inside the computational domain. The

difference is again normalized with respect to the energy of the system at the beginning595

of the simulation, Π0. It is very important to note that in previous part of this exam-

ple, we tried to implement the 1st order ABC method in the FPM solver; however, the

method was completely unstable, leaving us no other choice than the proposed method

for solution of the unbounded domain using an FPM scheme.

The results depicted in Fig. 10 show that while the 1st order ABC method is supe-600

rior in a very short span of the time in the middle of simulation, the proposed method

performs better, especially in the final stage of the simulation, when the majority of the

energy is radiated towards the exterior domain.

6.2. Example 2: wave motion in an unbounded domain with scatterers

The main target in this example is to demonstrate the performance of the present605

method in the solution of an elastic wave motion problem in presence of scatterers in-

side the computational domain. The scatterers reflect waves at different angles of in-

cidence; hence, such a problem is harder to solve and has more similarity with real-

world engineering problems. For a better comparison, we use the same computational

and extended domains as in Example 1, and add two circular scatterers. These scatter-610

ers are positioned asymmetrically within the computational domain at ⟨0.25, 0.25⟩ and

⟨0,−0.3⟩, both with a radius of 0.1. For the initial condition of the system, we choose

a superposition of two Gaussian bell shapes, as in Eq. (71), but centered at ⟨±0.1, 0⟩.
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Figure 10: The variation of the normalized energy difference in time between the Dirichlet ABC and the 1st

order ABC in Example 1, Part B.

The initial displacement along the x-axis, as well as the aforementioned scatterers are

depicted in Fig. 11. Homogenous Dirichlet condition is imposed on the scatterers.615

The computational and extended domains are discretized using a Cartesian grid with

Δx = 0.004. The solver is run for 3000 steps with a time increment of Δt = 5 × 10−6

as before, leading to a final time of T = 0.015.

The contour plots of displacement along the x-axis obtained by both models at dif-

ferent time instants are presented in Fig. 12. It can be observed that the solution obtained620

by the present model conforms well to that of the reference solution. The absorbing

technique is performing appropriately, and no accountable spurious reflections can be

observed in the results, while the reflection of the waves from the scatterers creates a

much more complex pattern and waves with very different incidence angles reach the

boundaries of the computational domain. Even in the last time instant, t = 0.015, still625

rather good conformity is seen between the results. Nonetheless, the present absorbing

technique is capable of guiding the waves towards the exterior domain in an appropri-

ate manner, so that the solution obtained by the present model resembles that of the

reference solution.

Similar to the previous example, the stability of the numerical solution for a long-630

term computational process is examined. To this respect, the variation of normalized

energy (corresponding to the computational domain) for 10 000 time steps is reported
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Figure 11: The initial condition in Example 2; the figure shows the displacement along the x-axis, u, taking

Δx = 0.004 in addition to the scatterers shown as black disks.

Table 2: The convergence study in Example 2.

Δx Error norm, e

0.010 0.01605040

0.004 0.00333814

in Fig. 13 (even though we have continued the simulation up to 100 000 steps). The

energy is normalized with respect to the initial energy of the system. As can be seen, the

energy dissipation rate in monotonic, and no instability (due to long-term calculations)635

can be concluded from the trend of variation. It should be remarked here that in this

example, due to presence of the scatterers, the energy leaves the domain at a slower

rate, compared to Example 1.

As in previous example, we report the normalized energy difference between the

proposed method and the reference solution in Fig. 14 for two different grid sizes, Δx,640

of 0.01 and 0.004. As expected, the finermodel is superior in terms of energy difference,

especially in last steps of the simulation. For a quantitative comparison, the L2 energy

error norm, e, defined in Eq. (73) for both grid sizes is reported in Table 2, which shows

better performance of the method when used with a finer grid size. The results, again,

approve the conclusion made in the previous example about the proposed method.645
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Figure 12: The results obtained for the propagation of pulse at different time instants in Example 2; the figure

shows the contour of displacement along the x-axis, u, taking Δx = 0.004.
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Figure 12: (continued)
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Figure 13: The variation of energy obtained by the present method in Example 2.
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7. Conclusion

A Dirichlet-type ABC for unbounded elastodynamic problems is presented. The

proposed method is local in space and time and does not employ any auxiliary vari-

ables or spatial derivatives of the field variables. It is equally well applicable to the

FEM and the meshless FPM methods, as it does not directly involve with the solution650

in the near field. This makes its implementation very easy, even in existing codes. The

method makes use of a series of plane waves adjusted to radiate energy towards the

exterior domain, based on residual-free EBFs. A local collocation scheme is employed

to construct the required vectors for calculation of ABCs at the beginning of the sim-

ulation. The ABCs are then used at each time step to update the field variables on the655

truncating boundary. A rather detailed investigation of the method is performed in a

series of numerical examples. The accuracy of the method is shown by reporting the

relative energy difference of the method with a reference solution on an extended do-

main. In the FEM example, the accuracy of the proposed method is compared with that

of the standard 1st order ABC method. It is interesting to report that our experiences660

show that the 1st order ABC method is unstable in FPM scheme, while the proposed

method can serve as a viable solution for treating problems with unbounded domains

with a consistent formulation. Another example, incorporating scatterers inside the

computational domain is investigated. While existence of the scatterers causes a very

complex pattern of waves, reaching the truncating boundary with different angles of665

incidence, the proposed method is capable of appropriately transmit the energy towards

the exterior domain, without accountable spurious reflections.
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