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Vegetation structure changes are expected to influence heat and moisture redistribution, however 38 
how variations in leaf area index (LAI) affect this global energy partitioning is not yet quantified. 39 
Here, we estimate that a unit change of LAI leads to 3.66±0.45 and -3.26±0.41 Wm-2 in latent 40 
(LE) and sensible (H) fluxes, respectively, over 1982-2016. Analysis of an ensemble of data-41 
driven products and land surface models (LSMs) shows these sensitivities increase by about 20% 42 
over the observational period, prominently in water supply-limited regions, likely because of an 43 
increased transpiration/evaporation ratio. Global greening has caused a decline in Bowen ratio 44 
(B=H/LE) of -0.010±0.002 per decade attributable to the increased evaporative surface. Such 45 
direct LAI effect on energy fluxes is largely modulated by plant functional types and background 46 
climate conditions. LSMs misrepresent this vegetation control possibly due to underestimation of 47 
the biophysical response to water availability changes and poor representation of LAI dynamics.  48 

 49 

The surface energy partitioning, resulting from the conversion of available energy into latent 50 
(LE) and sensible (H) heat, exerts a strong control on the state of the atmospheric boundary layer, 51 
the lowest layer of the troposphere that is in contact with the surface of the Earth. It propagates 52 
changes in land surface properties to the atmosphere1,2 by regulating land-atmosphere feedbacks 53 
and influencing the global cycles of water and energy3. While most research has been devoted to 54 
exploring the impact of soil moisture on surface energy partitioning4,5, vegetation density can 55 
also play an important role in the modulation of the surface energy budget6–8. In fact, changes in 56 
vegetation structure and physiology associated with the ongoing global and persistent increase in 57 
leaf area index (LAI)9 are expected to influence canopy conductance, aerodynamic properties and 58 
the albedo of ecosystems, ultimately affecting water and energy fluxes between land and 59 
atmosphere10,11. Consequent variations in climate modulate the interplay between LAI-related 60 
biophysical processes and the surface energy partitioning12,13. Rising atmospheric CO2 61 
concentration further affects the vegetation control on surface energy partitioning by reducing 62 
stomatal conductance14 and therefore transpiration per unit of leaf area, ultimately leading to an 63 
increasing ratio of carbon gain to water loss (water-use efficiency, WUE)15. Although the 64 
influence of global greening feedbacks on surface temperature has been recognized and 65 
assessed12,16, its more direct impacts on the surface energy partitioning at planetary level have 66 
not been explicitly explored yet.  67 

Disentangling the role of LAI from the contribution of other direct drivers on the surface energy 68 
partitioning is challenging due to the variety of land-atmosphere interactions occurring over 69 
multiple spatial and temporal scales17. For this scope, the availability of observations from field 70 
experiments18 and flux tower data19 is limited in terms of number of stations and geographic 71 
coverage, allowing only the partial characterization of the spatio-temporal variability of the 72 
phenomena. On the modelling side, Land Surface Models (LSMs) – the land component of Earth 73 
System Models used to predict future climate trajectories – include LAI as a key prognostic 74 
variable and its interactions with surface biophysics, hydrology and biogeochemistry are 75 
represented through equations of varying complexity20. However, LSMs show important 76 
limitations in reproducing the interplay between vegetation and climate due to an incomplete 77 
understanding and model representation of biophysical processes21,22. These drawbacks 78 
inevitably hamper understanding of land-atmosphere interactions based on in situ observations 79 
and model predictions. Conversely, the increasing availability and accessibility of satellite 80 
remote sensing products that address the physical state of the land surface may overcome these 81 
limitations and offer robust global datasets for model evaluation and process understanding.  82 
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Here, we investigate the impacts of greening on LE, H and Bowen ratio (defined as B=H/LE) for 83 
1982–2016 at the global scale, using four observation-driven products of evapotranspiration (ET) 84 
and climate drivers in combination with three long-term satellite LAI data sets. We refer to the 85 
growing season averaged LAI as a diagnostic variable of vegetation density. The sensitivity of 86 
LE, H and B to LAI changes is quantified as partial derivatives from multiple linear regressions 87 
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⁄ , where Z is any of the energy terms). The potentially confounding direct effect (not 88 
through LAI) of climate drivers like precipitation and temperature on LE, H and B has been 89 
factored out by considering these variables among the predictors of the linear model (Methods). 90 
Furthermore, interannual variations of both response variable and predictors have been used in 91 
the regression in order to rule out possible long-term dependencies between covariates. Long-92 
term effects in surface energy terms attributable strictly to the greening (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) are then 93 
quantified by combining sensitivity estimates with long-term trends in LAI. Sensitivity 94 
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⁄ ) and effects (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) are derived for each combination of LAI and energy flux datasets 95 
resulting in a 12-member ensemble of observation-based estimates. In order to account for 96 
differences across datasets23, the ensemble average is calculated and the corresponding standard 97 
error is retrieved (Methods). Finally, we compared the metrics derived from satellite-based 98 
observations with those computed on factorial simulations of ten state-of-the-art LSMs, in order 99 
to assess the ability of models to represent the interplay between vegetation changes and surface 100 
energy partitioning (Methods).  101 

Increased sensitivity of surface energy partitioning on LAI 102 

Estimates of sensitivity of the energy partitioning terms to LAI (Eq. (1), Methods) quantified for 103 
the 1982–2016 period show a clear dependence on the background climate (Fig. 1a,d,g). 104 
Confirming previous model-based studies6, the increase in LAI enhances LE globally (3.66±0.45 105 
Wm-2 per unit of leaf area, Supplementary Table 1) and particularly in warm-dry regions, as a 106 
consequence of the increase in evaporative surface (Fig. 1a). In these regions, despite potential 107 
soil moisture limitation on LE due to low rainfall, at inter-annual timescale an increase in LAI is 108 
associated with an increase in LE through complex adjustments of LAI sustaining LE, such as 109 
root development, access to groundwater24 and phenological seasonal shifts25. Given that LE and 110 
H represent competitive pathways for energy release from the land surface, H shows opposite 111 
patterns of sensitivity to LAI than LE, with an average negative sensitivity of -3.26±0.41 Wm-2 112 
per unit of leaf area (Fig. 1d, Supplementary Table 1). Ultimately, changes in B are inversely 113 
related to LAI (-0.14±0.02 per unit of leaf area, Fig. 1g and Supplementary Table 1), since the 114 
increase in leaf area favors the dissipation of available energy by evaporating water, leading to 115 
surface cooling and a subsequent H reduction12,16. These findings emphasize the importance of 116 
interannual vegetation controls on climate, particularly during extreme events such as 117 
meteorological droughts and heatwaves, when a higher LAI can effectively dampen the increases 118 
in land surface temperature by evaporative cooling, yet at the expense of further drying out the 119 
soils26.  120 

Exploring the temporal variation of the sensitivities with moving windows of different amplitude 121 
(for brevity a 13-year window is shown here), we found substantial changes over the 122 
observational period, particularly from 2000 onwards (Fig. 1b,e,h). Globally we quantified a 123 
significant (p-value≤0.05) relative increase of 20-24% (∆𝑟𝑟𝑟𝑟𝑟𝑟) in the value of the sensitivity of 124 
energy fluxes to LAI over 2000–2016 versus 1982–1999 (gray circles in Fig. 1c,f,i), suggesting 125 
an increasing control of energy fluxes from terrestrial vegetation. Despite the relevant spread 126 
observed across single LAI products, global trends are largely consistent (Extended Data Fig. 1) 127 
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and show a dependence of the variation in sensitivity to the changes in interannual LAI 128 
variability (Supplementary Fig. 1). Albeit we cannot exclude a possible contamination of the 129 
variability in LAI from the temporal variations in satellite platforms and sampling density, we 130 
stress that climate variations are very likely to play a major role on the emerging signal. This 131 
statement is supported by the analysis of the gradients in sensitivity across space (Extended Data 132 
Fig. 2, Methods). The dependence of the sensitivity on the aridity index over the two observation 133 
periods is statistically identical, despite the change in the observation system (from AVHRR to 134 
MODIS). These results further corroborates the relevance of climate change on the temporal 135 
variation of the sensitivity.  136 

The possible mechanisms responsible for such emerging variations in sensitivity were 137 
investigated by disaggregating the signal for regions where evaporation is limited by atmospheric 138 
demand or by water supply (Methods). We found that the largest absolute variations occur in 139 
regions limited by the supply of moisture where the change of sensitivity is four-fold higher than 140 
in demand-limited regions (e.g., ∆𝑎𝑎𝑎𝑎𝑎𝑎 of sensitivity of LE ~1.8 and 0.4 Wm-2, respectively, green 141 
and orange circles in Fig. 1c). The concomitant strong positive trends in temperature and 142 
moderately negative trends in precipitation lead to a progressive transition to warmer and drier 143 
conditions (Extended Data Fig. 3c-f), which is represented as a shift towards the upper-left 144 
corner in the panels Fig. 1a,d,g. In moisture supply-limited environments, such changes in 145 
climate background have likely increased the ratio between transpiration and evaporation leading 146 
to an enhanced biological control on evapotranspiration. This hypothesis is supported by the 147 
widespread increasing trend in the fraction of transpired water to the total evapotranspiration 148 
(Extended Data Fig. 3i,j) also documented in previous studies27. The recent climate-induced 149 
expansion of areas limited by water supply has presumably amplified this process (Extended 150 
Data Fig. 4a).  151 

We found that, consistently with expectations, temporal changes in sensitivity are lower for the 152 
datasets that explicitly account for the direct CO2 effects on stomatal conductance and 153 
transpiration (PLSH and BESS) than for the other products (GLEAM and MTE). However, a 154 
significant increase in sensitivity (∆𝑟𝑟𝑟𝑟𝑟𝑟>10%) emerges even for ET products that consider CO2 155 
effects (Fig. 1c,f,i and Extended Data Fig. 1), therefore suggesting that the increase in WUE28 156 
cannot fully offset the emerging climate signal of increasing control of plant leaves on terrestrial 157 
energy fluxes.   158 

Greening plays a key role in surface energy partitioning 159 

The effects of greening on surface energy partitioning are derived by multiplying the observed 160 
sensitivity by the long-term trend in growing season averaged LAI as quantified for the 1982–161 
2016 period (Extended Data Fig. 3a,b and Extended Data Fig. 5a-c), i.e. by applying the 162 
methodology described in ref. 12 (Eq. (4), Methods). Results show that the variations in LAI 163 
occurring over the last three and a half decades led per se to a significant increase in LE over a 164 
large part of the globe (Fig. 2a,c), particularly in moisture supply-limited regions (0.41±0.09 165 
Wm-2decade-1, Supplementary Table 1). Such a pronounced impact of greening results from the 166 
combination of moderately positive trends in LAI (Extended Data Fig. 3a,b) and the high 167 
sensitivity of the latent heat fluxes to LAI in those regions (Fig. 1a), consistently with previous 168 
findings27,29. In contrast, atmospheric demand-limited regions show a limited impact of LAI 169 
changes on LE trends (Fig. 2a,c), primarily due to the low sensitivity of evapotranspiration to 170 
LAI changes in these areas (Fig. 1a). As expected, trends in H associated with greening are 171 
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opposite to those of LE, due to their reverse sensitivity (Fig. 2d,f). The combination of increasing 172 
LE and decreasing H trends attributable to the greening signal led to a widespread decline on B (-173 
0.010±0.002 decade-1, Supplementary Table 1) (Fig. 2g,i). Since these effects of LAI are larger in 174 
water-limited regions associated with high B values, the recent greening may have reduced the 175 
spatial variability of surface energy partitioning across the Earth, ultimately affecting the 176 
strength of the land-atmosphere coupling and the dynamics of the boundary layer.  177 

The seasonality of the sensitivity show peak values at the onset of the growing season, 178 
particularly in Northern Hemisphere temperate regions (Fig. 2b,e,h). This suggests that during 179 
the growing season the partition of surface available energy is more closely controlled by 180 
variations in LAI, mainly due to the increase in the ratio of transpiration to evaporation. Climate 181 
driven changes in plant phenology may further amplify these mechanisms, particularly at the 182 
beginning of the growing season due to the expected increase in transpiration associated to the 183 
earlier onset of vegetation green-up30. Furthermore, we note that the LAI-related trend in energy 184 
partitioning shows a modest seasonal pattern also at high-latitudes with a change in sign that is 185 
more evident for LE (Fig. 2b,e). In this climate zone, the interplay between LAI and energy 186 
partitioning seems to be dominated by radiative terms during cold seasons (LAI-related reduction 187 
in albedo increasing H / decreasing LE during condition of snow cover), but still by changes in 188 
evaporative surface during the warm seasons (strong positive control of LAI on transpiration), 189 
consistently with previous studies31.  190 

The methodology used to quantify the effects of long-term trends of LAI on surface energy 191 
partitioning at annual level is then applied to each predictor of the regression to assess their 192 
relative contributions. A large variability across supply- and demand-limited zones emerges for 193 
the effects associated with LAI, air temperature (T), precipitation (P) and short-wave incoming 194 
radiation (SWIN) (Fig. 3a-c), reflecting the spatial variations in long-term trends and sensitivity of 195 
each variable (Extended Data Fig. 3 and Extended Data Fig 5). While our assessment neglects 196 
possible interactions amongst drivers, it unequivocally shows that LAI plays a larger control than 197 
direct effects of T, P and radiation on the trends in energy fluxes (Fig. 3a-c). Notably, the low 198 
contribution of P mostly results from its low and spatially varying long-term trend (Extended 199 
Data Fig. 3e,f). Beside the comparison among single drivers, we found that LAI effects are 200 
concordant in sign with the overall trends in the energy partitioning terms (Supplementary Fig. 201 
2) over more than 63% of the vegetated land (red labels of quadrants in Fig. 3d-f) and explain a 202 
considerable fraction of their variance (45–63%, blue labels in Fig. 3d-f). These findings 203 
emphasize the importance of LAI trends in affecting the long-term variations in surface energy 204 
partitioning, in particular by amplifying the release of energy via latent heat (Fig. 2a,d,g and 205 
Supplementary Fig. 2).  206 

Leaf control and plant functional type 207 

The spatial distribution of plant functional types (Fig. 4a) modulates the effects of LAI changes 208 
on energy partitioning. In the observation period forests show a strong increase in LAI, 209 
predominantly driven by climate change and CO2 fertilization9, and provide the largest 210 
contribution to the global signal of greening (48%, Fig. 4b). However, they are typically 211 
characterized by a low sensitivity of the energy terms to LAI possibly due to a more conservative 212 
and even use of water resources supported by a deeper rooting system32 and by their abundance 213 
in demand limited regions. Therefore, when the two terms are combined (greening and 214 
sensitivity, Eq. (4), Methods), forests contribute for 21-27% of the global effect (𝛿𝛿𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿, where Z 215 
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is any of the energy terms). In contrast, natural grasses show lower greening rates compared to 216 
forests but larger sensitivity driven by the rapid dynamics of LAI and shallow soil moisture, 217 
which are typical of these ecosystems. This combination results in a contribution of 32-38% to 218 
the global effect of greening on the surface energy partitioning. Croplands, despite their limited 219 
fractional cover (25%), play a more important role in affecting the surface energy partitioning by 220 
contributing to 41-43% of the global signal. This derives from the combination of relatively high 221 
values of both sensitivity and greening (Fig. 4c-e), the latter one possibly driven by agricultural 222 
intensification, which occurred in many regions of the World during the past decades33.  223 

Possible sensitivity bias in land surface models 224 

The ability of LSMs to reproduce the interplay between LAI and surface energy partitioning has 225 
important implications on prediction of future land-climate interactions 22. To assess this ability 226 
we replicated the analysis performed on observation-driven products on an ensemble of ten state-227 
of-the-art LSMs (TRENDY v734). Model simulations show that the CO2 effect on stomatal 228 
conductance substantially reduces the sensitivity of LE to changes in LAI (-11%, Fig. 5b, S1 229 
scenario) to the point of offsetting the modest but significant signal originated from changes in 230 
climate (8%, Extended Data Fig. 6c11, S3-S1 scenario). This ultimately leads to a net signal of 231 
no change in sensitivity in the scenario where all factors (CO2, climate and land use change) are 232 
varied (Fig. 5a, S3 scenario). This pattern, in combination with the predicted reduction of supply-233 
limited zones (Extended Data Fig. 4b), leads to an overall decline in the coupling between LE 234 
and water availability. These simulated patterns are in clear contrast with those retrieved from 235 
observation-driven products (Fig. 1 and Extended Data Fig. 4a). Such divergence suggests that 236 
LSMs may overestimate the sensitivity to CO2 and underestimate the biophysical response of 237 
ecosystems to changes in water availability. This pattern emerge also from the systematic model 238 
underestimation of the fraction of transpired water to the total evapotranspiration35. Under a 239 
scenario of warming this bias of LSMs could ultimately lead to an underestimation of summer 240 
droughts sustained by anticipated spring phenology36. In addition, the large spread across LSMs 241 
(Fig. 5a,b and Extended Data Fig. 6) highlights the large structural uncertainty in the model 242 
representation of the phenomena. In fact, even if the ensemble is driven with a common climate 243 
forcing, model structure and parameterization show a large effect on the energy partitioning37. 244 

Overall, focusing on the sensitivity derived over the whole period and assuming the observation-245 
based sensitivity of LE to LAI as reference, the tested LSMs show an overestimation of the 246 
sensitivity over tropical and boreal zones and an underestimation over arid-temperate zones 247 
(average data-model discrepancy of 0.89±0.44 and 2.9±0.53 Wm-2 per unit LAI change, 248 
respectively) (Fig. 5c,d). Such differences are associated to the underestimation and 249 
overestimation of ΔLAI in the two regions, respectively (Fig. 5e). Models show sensitivities and 250 
LAI trends with bias of opposite sign with respect to observational retrievals over about half of 251 
the globe and such compensatory effects hide the effective data-model discrepancies in the 252 
resulting global effect of greening on the partitioning of the surface energy fluxes (Extended 253 
Data Fig. 7). While disparities with respect to observation-based findings are conditioned by the 254 
accuracy of satellite retrievals – particularly critical in the tropics where LAI estimations tends to 255 
saturate – these results emphasize the current uncertainty generated by the approximate model 256 
representation of key vegetation-mediated biophysical processes.  257 

Conclusions 258 
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Our analysis provides observational evidence that changes in vegetation density (LAI) during the 259 
past three and a half decades have played an important role in the surface energy partitioning, by 260 
favoring the release of energy via LE over H. This increased control of vegetation appears 261 
plausibly connected to the exacerbation of water-limited conditions and the progressive increase 262 
in evaporative surface associated with the global greening, and occurs despite the counteracting 263 
effect of CO2 fertilization on stomatal conductance. As land feedbacks on climate are linked to 264 
vegetation status and activity, future land geoengineering could play an important role in 265 
modulating the strength of that forcing8. Furthermore, our results reinforce the importance of 266 
considering the co-variability of soil moisture and vegetation dynamics for the effective appraisal 267 
of the land-atmosphere coupling (usually focused exclusively on soil moisture variability and 268 
patterns)7, particularly in view of the expected increase in LAI (ref. 38) and drought conditions39 269 
over most of the globe. Finally, our data-model comparison emphasizes the need to better 270 
account for the impact of vegetation changes in energy partitioning to improve climate model 271 
projections. Fostering model representation of vegetation-atmosphere interactions with 272 
observation-driven estimates will ultimately enhance the reliability of future climate predictions.  273 
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 378 

Methods 379 

Vegetation dynamics 380 

Three satellite-based LAI products were used to analyze the changes in global vegetation for the 381 
period 1982–2016 derived from the Global Land Cover Facility (GLASS v340, 382 
http://ftp.glcf.umd.edu/), the Global Inventory Modeling and Mapping Studies Normalized 383 
Difference Vegetation Index (GIMMS3g v141, http://sites.bu.edu/cliveg/datacodes/) and the 384 
NOAA Climate Data Record (TCDR v442, ftp://eclipse.ncdc.noaa.gov/). The Monthly mean 1° 385 

http://ftp.glcf.umd.edu/
http://sites.bu.edu/cliveg/datacodes/
ftp://eclipse.ncdc.noaa.gov/
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LAI was calculated by averaging LAI values from each product's original spatio-temporal 386 
resolution. The residual data gaps were filled by the Harmonic Analysis of Time Series 387 
(HANTS) method23. The growing season averaged LAI was used as a proxy of vegetation growth 388 
in this study. To this aim a climatological growing season spanning over months with at least 389 
75% of days in greenness phase was derived from the Vegetation Index and Phenology satellite-390 
based product43 (VIP, https://vip.arizona.edu/vipdata/V4/DATAPOOL/PHENOLOGY/) and 391 
utilized as reference period to derive a multi-year time series of growing season LAI. 392 
Nonparametric Mann-Kendall trend tests were then computed at pixel level after averaging the 393 
LAI value over a 3°x3° spatial moving window separately for each product (Supplementary Fig. 394 
3). The moving window aimed to preserve spatial consistency with the retrievals of sensitivity of 395 
energy partitioning terms to LAI (see next section). A sensitivity analysis of interannual variation 396 
and trend in LAI on the different thresholds used to identify the growing season was performed to 397 
corroborate the robustness of our results (Supplementary Fig. 4).  398 

Results are explored for different climate zones, derived from the Köppen-Geiger World map of 399 
climate classification44, and for vegetated types (V) including forests (broadleaf and needleleaf 400 
trees), natural grasses and croplands. We used datasets of plant functional types (PFTs) derived 401 
from the annual land cover maps of the European Space Agency’s Climate Change Initiative 402 
(ESA-CCI, https://www.esa-landcover-cci.org/)45 over the 2000–2014 period referring to a 403 
simplified aggregation scheme based on physiognomy alone. Based on such classifications 404 
scheme we derived the multi-annual average cover fraction of each vegetated class (𝐹𝐹𝑉𝑉). Desert 405 
and semi-desert areas with average growing season LAI < 0.15 m2m-2 were excluded from the 406 
analyses.  407 

Energy partitioning terms and evapotranspiration products  408 

We focused the analysis on the interplay between interannual variations in LAI and the terms of 409 
the surface energy partitioning, including latent heat (LE), sensible heat (H) and Bowen ratio 410 
(defined as B=H/LE) over the 1982–2016 period. LE was derived by combining latent heat of 411 
vaporization and evapotranspiration (ET) estimates derived from four different observation-412 
based datasets including the Global Land Evaporation Amsterdam Model (GLEAM v.3.2a46,47, 413 
https://www.gleam.eu/), the Model Tree Ensemble (MTE48, https://www.bgc-414 
jena.mpg.de/geodb/projects/Home.php), the Process-based Land Surface 415 
Evapotranspiration/Heat Fluxes (PLSH49, http://files.ntsg.umt.edu/data/) and the Breathing Earth 416 
System Simulator (BESS50, http://environment.snu.ac.kr/bess_flux/). The latter one represents a 417 
novel long-term ET product specifically developed for this study retrieved from a consolidated 418 
process-based model in combination with the three LAI satellite products utilized here. H was 419 
obtained from the closure of the energy balance by subtracting LE from the surface net radiation 420 
(RN), the latter term retrieved from the ERA-interim reanalysis data51 421 
(http://apps.ecmwf.int/datasets/). As such, the estimate of sensible heat implicitly includes the 422 
heat storage in canopy air and biomass and ground heat terms of the energy-balance equation. 423 
Transpiration and evapotranspiration data generated from GLEAM were also used to explore the 424 
trend in the fraction of transpired water to the total evapotranspiration Tr/ET (Extended Data Fig. 425 
3i,j). Sensible fluxes derived from MTE48 were used to verify the consistency of H estimates 426 
derived from the closure of the energy balance.  427 

CO2 concentrations may play a role in the interplay between changes in LAI and energy 428 
partitioning by leading to the partial closure of stomata and restricting the diffusion of water 429 

https://vip.arizona.edu/vipdata/V4/DATAPOOL/PHENOLOGY/
https://www.esa-landcover-cci.org/
https://www.gleam.eu/
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
http://files.ntsg.umt.edu/data/
http://environment.snu.ac.kr/bess_flux/
http://apps.ecmwf.int/datasets/
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vapor out of leaves15. The use of PLSH and BESS, which explicitly integrate the CO2 effect on 430 
stomatal conductance, allows accounting for such mechanisms. On the other hand, LE estimates 431 
based on GLEAM are independent from LAI (or other optical remote sensing metrics), which 432 
preserves the interplay between LE and LAI estimates from possible circularity effects. The 433 
vegetation status in GLEAM is characterized by the vegetation optical depth, a microwave-based 434 
vegetation parameter related to vegetation water content and biomass. In contrast, MTE, PLSH 435 
and BESS are based on a set of satellite-based predictors among which NDVI-derived fPAR 436 
estimates and LAI (Supplementary Table 2). 437 

Inferring supply and demand limitation of LE 438 

We inferred the primary limitation of LE, atmospheric demand or moisture supply, by comparing 439 
correlations between growing season averages of LE and growing season averages temperature 440 
and precipitation, in accordance with previous studies4,52. Growing season dates are derived from 441 
VIP surface phenological data43 (as computed for LAI). Since temperature, radiation, and vapor 442 
pressure deficit are strongly correlated, temperature can be used as a proxy for atmospheric 443 
demand. We then compared the correlation between LE and precipitation (𝜌𝜌(𝐿𝐿𝐿𝐿,𝑃𝑃)) and 444 
correlation between LE and temperature (𝜌𝜌(𝐿𝐿𝐿𝐿,𝑇𝑇)), both computed over the whole time series 445 
spanning the 1982-2016 period, and defined supply-limited zones where 𝜌𝜌(𝐿𝐿𝐿𝐿,𝑃𝑃) > 𝜌𝜌(𝐿𝐿𝐿𝐿,𝑇𝑇) 446 
and demand-limited zones where 𝜌𝜌(𝐿𝐿𝐿𝐿,𝑃𝑃) < 𝜌𝜌(𝐿𝐿𝐿𝐿,𝑇𝑇). We then obtained a “static” 447 
classification map (moisture supply-limited vs. atmospheric demand-limited) resulting from the 448 
average of the multiple correlation maps obtained from the different LE (ET) products and 449 
climate data used in this study. Such clustering was used in combination with the vegetation map 450 
where only pixels with ≥ 80% of vegetated cover and ≤ 10% of irrigated area were included in 451 
the study domain (Supplementary Fig. 5). To this aim, we used the Global Map of Irrigation 452 
Areas (GMIA, http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm) derived from 453 
statistical census data for the year 2005 (ref. 53). Furthermore, in order to explore the temporal 454 
evolution of supply- and demand-limited zones we replicated the above-mentioned classification 455 
scheme over moving windows of different amplitude (7 and 13 years). This latter analysis 456 
produced a set of “dynamic” classification maps whose results are shown in Extended Data Fig. 457 
4.  458 

Sensitivity of surface energy partitioning on LAI changes  459 

Sensitivity of surface energy partitioning terms (LE, H or B hereafter referred as Z for short) on 460 
LAI changes was initially computed at annual scale for the whole 1982–2016 period. It was 461 
expressed as the partial derivative resulting from a multiple linear regression relating the 462 
interannual differences in the Z component (ΔZ) to interannual differences in growing season 463 
averaged leaf area index (ΔLAI), annually averaged air temperature (ΔT), annually cumulated 464 
precipitation (ΔP), and annually averaged incoming shortwave radiation (Δ𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼):  465 

Δ𝑍𝑍 = 𝛽𝛽0 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

∙ Δ𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ Δ𝑇𝑇 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∙ Δ𝑃𝑃 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼
∙ Δ𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼,  (1) 466 

T, SWIN and P are the climate data used to derive each ET product (Supplementary Table 2) 467 
while LAI is retrieved from the satellite products described in the previous section (GLASS v3, 468 
GIMMS3g v3 and TCDR v4). All data have been linearly resampled prior to the analysis to the 469 
common 1°x1° spatial resolution. Eq. (1) is applied for each unique combination of energy 470 
fluxes and LAI dataset, therefore resulting in a 12-member ensemble of sensitivity estimates for 471 

http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm
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each Z term.  Such an approach based on the difference between two consecutive years (Δ 472 
operator) disentangles the resulting signal from possible long-term dependencies on covariates 473 
(e.g. the combined effect of rising temperatures and CO2 concentrations on long-term LAI trends, 474 
as well as effects of long-term drying on soil moisture and biomass). The derived signal 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 475 

integrates the bidirectional interactions between LAI and the Z term. To better sample the 476 
statistical inferences all predictors in Eq. 1 were quantified for each pixel over a centered 3°x3° 477 
spatial window. This approach factors out LAI impacts on energy fluxes that are triggered by a 478 
variation in the main climate drivers (e.g., increase in P triggering larger LAI and LE fluxes). 479 
However, the regression model in Eq. (1) assumes a linear interplay between response variable 480 
and predictors and does not account for the possible covariation amongst predictors. The use of 481 
such method, in place of more sophisticated techniques, appears a reasonable approach 482 
considering: 1) the length of the time series (35 years); 2) the choice of a parsimonious approach 483 
that can be applied consistently across different products and variables; 3) the ability to capture 484 
possible emergent first-order temporal changes in the signal.  485 

Eq. 1 was also applied at monthly time scale separately for each LAI product. Monthly-scale 486 
sensitivity was computed by using growing season averaged LAI values and monthly-scale 487 
climate drivers in order to minimize the potential biases of satellite retrieval of LAI in snow 488 
cover conditions and to explore the effects of the changes in background climate. Note that 489 
monthly-scale Δ values for climate drivers are calculated as difference between the same months 490 
of two consecutive years. Furthermore, in order to better characterize soil moisture conditions, 491 
monthly-scale precipitation (P) accounts for concurrent and lagged cumulated precipitation 492 
whose contributions are derived from an empirically-derived decay exponential function under 493 
the assumption of 1m soil depth54, as follows:  494 

𝑃𝑃𝑡𝑡0 = ∑ 𝑃𝑃𝑖𝑖
𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖+1

𝑛𝑛
𝑖𝑖=0 �1 − 𝑒𝑒−(𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖+1)�𝑒𝑒−(𝑡𝑡𝑖𝑖−𝑡𝑡0),  (2) 495 

where 𝑡𝑡0 and 𝑡𝑡𝑖𝑖 refer to the current month and the i-th lagged month, respectively.  496 

Temporal variations in sensitivity of energy partitioning terms to LAI 497 

In order to explore possible long-term variations in sensitivity of energy partitioning terms to LAI 498 
changes, Eq. (1) was also computed on annual scale over 7-year and 13-year temporal moving 499 
windows. This analysis was complemented with sensitivities estimated over two consecutive 500 
independent periods ranging from 1982 to 1999 (t1) and from 2000 to 2016 (t2). Absolute (∆𝑎𝑎𝑎𝑎𝑎𝑎) 501 
and relative (∆𝑟𝑟𝑟𝑟𝑟𝑟) changes in sensitivities were quantified and t-test was then used to determine 502 
if the two samples 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡2
 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡1
 were significantly different from each other. Temporal 503 

variations in sensitivity of sensible fluxes to LAI were also computed by using native estimates 504 
(𝐻𝐻𝑛𝑛) directly provided by MTE. Results of this latter comparison are largely consistent with 505 
estimates obtained from H=RN-LE confirming the marginal effects of residual heat storage flux 506 
(Supplementary Fig. 6).     507 

Potential effects of changes in satellite sensors  508 

LAI datasets used in this study have been generated from time series of satellite observations that 509 
have been specifically harmonized to remove biases caused by changes in sensors. However, we 510 
cannot exclude that some residual effects of sensor change might still influence the year-to-year 511 
variations in LAI and thus the sensitivity of energy partitioning to LAI changes23,55. We therefore 512 
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explored the variations in sensitivity recorded during the two afore-mentioned periods, 1982-1999 513 
(t1) and 2000-2016 (t2) separately for each LAI product (Fig. S2). The split between these two 514 
periods reflects a major change in the monitoring system given the first year of 515 
Terra MODIS' operation in 2000, a sensor used in several LAI products in the t2 period. During 516 
the t1 period, LAI data were exclusively based on AVHRR acquisitions.  517 

We evaluated the potential effects of changes in sensors by exploring the climate control on 518 
sensitivity ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) for the t1 and t2 periods. To this aim, we expressed the sensitivity estimates as a 519 

function of the aridity index (𝐴𝐴𝐴𝐴)56, quantified as:   520 

𝐴𝐴𝐴𝐴 = 𝑃𝑃
𝑇𝑇+33

, (3),  521 

where P and T are the climatological estimates of annual cumulated precipitation and annual 522 
average temperature computed for the reference temporal period (Extended Data Fig. 2a,c,e). 523 
Based on the Kolmogorov-Smirnov significance test (p-value<0.05) we cannot reject the 524 
hypothesis that the two resulting samples come from the same distribution. In case of a systematic 525 
bias on the climatic control on 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 the two curves should have been statistically different. 526 

Furthermore, we derived the sensitivity of energy fluxes to LAI changes for the whole 1982-2016 527 
period using spatial gradient derived in a climatic space instead of temporal variability. For this 528 
purpose sensitivities have been binned in a precipitation-temperature (PT) space where every bin 529 
is therefore equally affected by variations in sensors, and where therefore gradients are 530 
independent form sensor changes over time (Fig. 1a,d,g). We then extrapolated annual sensitivity 531 

values ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝑃𝑃𝑃𝑃
) from the PT domain based on annual precipitation and temperature for each grid 532 

of the globe and for each year. Therefore, temporal changes in sensitivity derived with this second 533 
methodology are fully conditioned on the changes in climate (Extended Data Fig. 2b,d,f). The 534 

emerging temporal changes in 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝑃𝑃𝑃𝑃
 show an increase in sensitivity of energy partitioning to LAI 535 

consistent with 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

, therefore corroborating the role of environmental conditions as drivers of the 536 
increase in vegetation control on energy partitioning. 537 

Effects of LAI trends on available surface energy partitioning  538 

Variations in the surface energy partitioning associated with long-term variations in LAI (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) 539 
have been computed by applying the methodology described in ref. 12 and expressed by the 540 
following formulation:  541 

𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

∙ 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿,  (4) 542 

where 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the long-term trend in growing season averaged LAI and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 is the sensitivity of 543 
Z to LAI (Eq. 1) quantified over the 1982–2016 period (both at annual and monthly level). 544 
Consistently to the assessment of sensitivity, a 12-member ensemble of trend estimates was 545 
derived based on the different combinations of original ET and LAI products for each energy 546 
term. We implicitly assumed that the sensitivity 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
, computed at interannual scale (Eq. (1)), is 547 

an appropriate metric to estimate the net climate impact on the phenomena. However, at longer 548 
time scale (from decades to century) additional ecosystem processes may emerge, such as 549 



14 
 

adaptation phenomena driven by species change and shifting biomes, which could affect the 550 
future trends of the sensitivity. An indication on the long-term sensitivity in case of full 551 
adaptation can be derived from the analysis of the sensitivity in the spatial domain (Fig. 1a,d,g; 552 
Extended Data Fig. 2b,d,f) 553 

In order to compare the LAI effects on the surface energy partitioning terms with those resulting 554 
from the other drivers of the regression, Eq. 4 was similarly applied to the sensitivities and long-555 
term trend estimates of annually averaged T, P and SWIN. The marginal effects of each single 556 
predictor have been quantified and compared with the overall trends in surface energy fluxes. 557 
The fraction of the overall trend in the energy term explained by a given predictor is then 558 
quantified as the ratio between the predictor-specific trend and the overall trend, both averaged 559 
globally.  560 

Disentangling the human land-use management 561 

We disentangled the marginal contribution of forests, natural grasses and croplands to the global 562 
signal of the long-term LAI effect on energy partitioning (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) computed at annual scale over 563 
the whole 1982-2016 period. The marginal contribution of a given vegetation type (𝑄𝑄𝑉𝑉) is 564 
derived utilizing the grid-cell cover fractions (𝐹𝐹𝑉𝑉), as weights, based on the following equation:   565 

𝑄𝑄𝑉𝑉(𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) = 100 ∙ ∑ �𝐹𝐹𝑖𝑖
𝑉𝑉∙𝐴𝐴𝑖𝑖∙𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖�𝑛𝑛

𝑖𝑖=1
∑ 𝐴𝐴𝑖𝑖∙𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖
𝑛𝑛
𝑖𝑖=1

, (5) 566 

where i represents a pixel, n is the total number of vegetated pixels in the globe, 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿 is the 567 
effect of a pixel, 𝐴𝐴𝑖𝑖 is the area of a pixel that varies with latitudes. A similar approach was used 568 
to derive the marginal contribution of the different vegetation types on global land area, long-569 
term trend in growing season averaged LAI (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿) and the sensitivity of the energy partitioning 570 
terms to LAI changes ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
). To characterize the biome-specific modulation effects on the LAI-571 

energy interplay, we binned the cover fractions of each vegetation type as a function of 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 572 
and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
.  573 

Furthermore, we derived a set of different land-use management conditions by excluding from 574 
the study domain all pixels with a fraction of croplands varying from 30% to 70%. We analyzed 575 
the relative changes in sensitivities over time (∆𝑟𝑟𝑟𝑟𝑟𝑟)) and the climate control on the effects 576 
(𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿 ) for different land-use management conditions (cropland percentage). The latter one was 577 
determined by binning 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿 as a function of the aridity index (Eq. (3)) and by testing the 578 
similarity of curves by the Kolmogorov-Smirnov test. Spatial and temporal patterns of sensitivity 579 
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⁄ ) and effects (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) appears substantially independent on the crop coverage 580 
(Supplementary Fig. 7), therefore confirming the climate controls on the LAI-energy interplay 581 
even in vegetated lands subject to human land-use management. 582 

Land surface model simulations  583 

To complement the analysis based on observational products, we use simulations from ten state-584 
of-the-art land surface models completed within the TRENDY v7 project34 including: CABLE-585 
POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, JSBACH, JULES, LPX, ORCHIDEE-CNP, 586 
VISIT. All models provide prognostic estimates of LAI and LE (only two models provided H). In 587 
order to analyze the modeled relative contributions of external factors to changes in sensitivity of 588 
LE to LAI, we used factorial simulations obtained for the 1982–2016 period under different 589 



15 
 

scenarios: changes in CO2, climate and land use (S3, the most realistic scenario); changes in CO2 590 
only (S1) and changes in climate and land use only (S3-S1). For each run we quantify the modeled 591 
sensitivity of LE to LAI changes (Eq. 1) and the associated long-term effect (Eq. 4). Results for the 592 
climate and land use change scenario are obtained by subtracting the sensitivity computed under 593 
S1 to sensitivity computed under S3. Model results are compared with analogous estimates derived 594 
from satellite observation-based products and bias patterns explored across the gradient of the 595 
differences in absolute Δ𝐿𝐿𝐿𝐿𝐿𝐿 between data and models. 596 

Multi-product ensembles 597 

In order to better capture the emerging signals and account for the possible differences across ET 598 
and LAI products, we calculated the multi-product average trend in the surface energy 599 
partitioning Z term of the 12 experiments obtained for different observation-driven LAI–ET 600 
combinations. To derive a global estimate of the trend and related uncertainty and to fulfill the 601 
assumption of uncorrelated errors we subset the global domain extracting pixels with non-602 
overlapping spatial windows, i.e. only pixel equally spaced 3 pixels in latitude and 3 pixels in 603 
longitude are selected. The sampling was replicated 9 times in order to progressively cover the 604 
full global domain. For each of the 9 global subsets (D) we derived the zonal median of trend, 605 
weighting each grid cell value based on its area. The global estimates of the trend in the Z term 606 
were quantified as the average of the estimates derived from the ensemble of the 9 global 607 
subsets. The analysis was replicated separately for each experiment. We then derived the average 608 
and the corresponding standard error of the ensemble of single-experiment global estimates. 609 
Similar procedures were employed to quantify the multi-product ensemble average and 610 
uncertainty of sensitivities and trend in growing season averaged LAI. Same approach is used for 611 
the ensemble of LSMs. We refer to average and standard error of the ensembles in text and 612 
figures where not differently indicated.    613 

 614 

Data availability 615 

The observation-driven datasets analyzed in this study are publicly available as referenced within 616 
the article. Simulations from ten Land Surface Models (CABLE-POP, CLASS-CTEM, CLM5.0, 617 
DLEM, ISAM, JSBACH, JULES, LPX-Bern, ORCHIDEE-CNP, VISIT) are available from the 618 
TRENDY dataset via a request to S. Sitch. All generated data are available from the 619 
corresponding author on request. 620 

 621 

Code Availability  622 

The custom MATLAB (R2017b) code written to read and analyze data and generate 623 
figures is fully available on request from the corresponding author. 624 
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Figure Captions 667 

Figure 1. Sensitivity of surface energy partitioning to LAI changes. (a,d,g) Sensitivity of 668 
latent heat ( 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
), sensible heat ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) and Bowen ratio ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) to LAI changes computed for the 669 

1982–2016 period and binned as a function of climatological mean precipitation (P, on the x-670 
axis) and air temperature (T, on the y-axis). Black dots show bins with average values 671 
statistically different from zero (t-test; p-value≤0.05). (b,e,h) Temporal variations of sensitivities 672 
(ensemble average ± standard error) computed over a 13-year moving window for moisture 673 
supply- and atmospheric demand-limited regions and the whole globe. (c,f,i) Temporal variations 674 
of sensitivities computed separately over the 1982–1999 and 2000–2016 periods for different 675 
regions and expressed in terms of absolute variations (∆𝑎𝑎𝑎𝑎𝑎𝑎, on the x-axis) and relative variations 676 
(∆𝑟𝑟𝑟𝑟𝑟𝑟, on the y-axis). Results for each single LAI-ET combination are shown with different 677 
symbols; those with a black outline represent ensemble averages (both computed for each ET 678 
product and for the whole set of combinations labelled as “Ensemble” in legend), while overlaid 679 
black dots indicate statistically significant changes in sensitivity (t-test, p-value≤0.05). The 680 
spatial domains of supply- and demand-limited regions are shown in Supplementary Fig. 5.        681 

Figure 2. Changes in surface energy partitioning associated with long-term trends in LAI. 682 
Spatial pattern (a), seasonal variability (b) and climate space (c) of LAI-related trend in latent 683 
heat (𝛿𝛿𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) computed for the 1982–2016 period. (d-f) and (g-i) as (a-c), but for the LAI-684 
related trend in sensible heat (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿) and Bowen ratio (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿), respectively. Black dots in 685 
(a,d,g) show pixels where both ensemble average LAI trend and sensitivity are significant 686 
(Mann-Kendall test and t-test, respectively; p-value<0.05). Values in (b,e,h) are binned as a 687 
function of time (on the x-axis) and latitudinal gradient (on the y-axis) and black dots show bins 688 
with average values statistically different from zero (t-test; p-value<0.05). Values in (c,f,i) are 689 
binned as a function of climatological mean precipitation (P, on the x-axis) and air temperature 690 
(T, on the y-axis) and black dots as in (b,e,h).   691 

Figure 3. Comparison of LAI and climate effects on surface energy partitioning. (a-c) 692 
Effects (x) of the long-term trends in LAI, temperature (T), precipitation (P) and short-wave 693 
incoming radiation (SWIN) on the latent heat (𝛿𝛿𝛿𝛿𝛿𝛿𝑥𝑥), sensible heat (𝛿𝛿𝛿𝛿𝑥𝑥), and Bowen ratio (𝛿𝛿𝛿𝛿𝑥𝑥) 694 
for moisture supply- and atmospheric demand-limited regions and the whole globe. Box plots 695 
represent the 12-member ensemble of observation-driven products. The spatial domains of 696 
supply- and demand-limited regions are shown in Supplementary Fig. 5. (d-f) Density plot of 697 
pixel values of overall trends (on the x-axis) in latent heat (𝛿𝛿𝐿𝐿𝐸𝐸), sensible heat (𝛿𝛿𝛿𝛿), and Bowen 698 
ratio (𝛿𝛿𝛿𝛿) versus the corresponding LAI-related effect 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝛿𝛿𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 and 𝛿𝛿𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿, respectively 699 
(on the y-axis). Red labels report the fraction of global domain falling in each quadrant 700 
delineated by red lines, while blue circles show the global-scale estimates with labels referring to 701 
the fraction of the overall trend in the energy term explained by the LAI effect alone.  702 

Figure 4. Contribution of different plant functional types (PFTs) to the LAI control on 703 
energy partitioning. (a) Spatial map of cover fractions of PFTs (forests, natural grasses and 704 
croplands). (b) Relative contribution of each PFT to the global land area (Area), long-term 705 
variations of LAI (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿), sensitivity of energy partitioning terms to LAI changes (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⁄ ), 706 
long-term effects in surface energy terms due to long-term variations of LAI (𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿), with the Z 707 
term as LE, H and B. (c-e) Cover fractions of PFTs binned as a function of the long-term 708 
variations of LAI (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿, on the y-axis) and the sensitivity of latent heat ( 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
), sensible heat 709 
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( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

) and Bowen ratio ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

) to LAI changes (on the x-axis). Average values are shown for each 710 
PFT in circles.  711 

Figure 5. Comparison of observational and land surface model results. (a) Temporal 712 
variations of the sensitivity of LE to LAI changes ( 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) retrieved from an ensemble of ten LSMs 713 

(TRENDY v7) under the S3 scenario (changes in CO2, climate and land use) and computed over 714 
13-year moving windows for supply- and demand-limited regions and the whole globe 715 
(ensemble average ± standard error). Labels at the bottom of the panel report the relative changes 716 
in sensitivities between the 1982–1999 period and the 2000–2016 period (∆𝑟𝑟𝑟𝑟𝑟𝑟), '*' indicates the 717 
t-test significance with p-value≤0.05. The spatial domains of supply- and demand-limited 718 
regions are shown in Supplementary Fig. 5. (b) as (a) but for the S1 scenario (changes in CO2 719 
only). (c) Spatial patterns of the differences in 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 between LSMs and satellite-driven products 720 

(TRENDY S3 - SAT) computed for the 1982–2016 period as the median of all data-model 721 
combinations. (d) Values in (c) are binned as a function of climatological mean precipitation (P, 722 
on the x-axis) and air temperature (T, on the y-axis). (e) Values in (c) are binned as a function of 723 
satellite (on the x-axis) and modelled (on the y-axis) absolute LAI interannual variations. Black 724 
dots in (c) and (d,e) show pixels and bins with average values statistically different from zero (t-725 
test; p-value<0.05).  726 



1 
 

Increased control of vegetation on global terrestrial energy fluxes 
Giovanni Forzieri, Diego G. Miralles, Philippe Ciais, Ramdane Alkama, Youngryel Ryu, 
Gregory Duveiller, Ke Zhang, Eddy Robertson, Markus Kautz, Brecht Martens, Chongya Jiang, 
Almut Arneth, Goran Georgievski, Wei Li, Guido Ceccherini, Peter Anthoni, Peter Lawrence, 
Andy Wiltshire, Julia Pongratz, Shilong Piao, Stephen Sitch, Daniel S. Goll, Vivek K. Arora, 
Sebastian Lienert, Danica Lombardozzi, Etsushi Kato, Julia E.M.S. Nabel, Hanqin Tian, Pierre 
Friedlingstein, Alessandro Cescatti 

 
Supplementary online material 

Figs. 1 to 7 

Tables 1 and 2  

  



2 
 

 
Figure 1. Relations between changes in sensitivity of LE to LAI and changes in inter-annual 
variations of LAI for single LAI and ET products. Relative variations of sensitivity of latent 
heat ( 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) to LAI changes computed between the 1982-1999 period and the 2000-2016 period 

(∆𝑟𝑟𝑟𝑟𝑟𝑟, Methods). Values are binned as a function of absolute inter-annual variations in LAI 
recorded during the 1982-1999 period (on the x-axis) and absolute inter-annual variations in LAI 
recorded during the 2000-2016 (on the y-axis); black dots show bins where relative changes are 
statistically significant (t-test; p-value≤0.05).   
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Figure 2. Overall trends in energy partitioning terms. Spatial patterns (a) and climate space 
(b) of long-term overall trend (1982–2016) in latent heat (𝛿𝛿𝛿𝛿𝛿𝛿). (c,d) and (e,f) as (a,b) but for 
the sensible heat (𝛿𝛿𝛿𝛿) and Bowen ratio (𝛿𝛿𝛿𝛿). Areas in (a,c,e) labelled with black dots indicate 
trends that are statistically significant (Mann-Kendall test; p-value≤0.05). Values in (b,d,f) are 
binned as a function of climatological mean precipitation (P, on the x-axis) and air temperature 
(T, on the y-axis) and black dots show bins with average values statistically different from zero 
(t-test; p-value≤0.05).  
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Figure 3. Trend in observed growing season averaged LAI. Spatial pattern (a), latitudinal 
profile (b) and climate space (c) of the trend in growing season averaged LAI (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿) derived 
from the GLASS v3 satellite product. Areas in (a) labelled with black dots indicate trends that 
are statistically significant (Mann-Kendall test; p-value≤0.05). Zonal median and confidence 
interval (standard error) of the latitudinal profile are shown in black line and grey shaded band in 
panel (b), respectively. Values in (c) are binned as a function of climatological mean 
precipitation (P, on the x-axis) and air temperature (T, on the y-axis) and black dots show bins 
with average values statistically different from zero (t-test; p-value≤0.05). (d-f) and (g-i) as (a-c) 
but for the GIMMS3g v3 and TCDR v4 satellite products, respectively. Labels “greening” and 
“browning” in (a,d,g) refer to the percentage area with a significant increase or decrease in LAI, 
respectively. 
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Figure 4. Sensitivity of trend and interannual variation of observed growing season 
averaged LAI to different definitions of greenness. (a) Latitudinal profile of the ensemble 
average trend in observed growing season LAI (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿). The growing season LAI is computed 
including months with a minimum percentage of days in greenness phase (Methods). Results for 
thresholds ranging between 10% and 90% are shown in different colors, as displayed in the 
legend. (b) as (a) but for the absolute interannual variation in LAI (|∆𝐿𝐿𝐿𝐿𝐿𝐿|). 
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Figure 5. Spatial domain of supply- and demand-limited regions. (a) Spatial map of supply- 
and demand-limited regions. (b) Classes in (a) binned as a function of climatological mean 
precipitation (P, on the x-axis) and air temperature (T, on the y-axis).  
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Figure 6. Comparison of spatial and temporal patterns of sensitivity of sensible fluxes to 
LAI changes for different retrieval approaches based on MTE data. (a) Sensitivity of 
sensible heat to LAI changes computed for the 1982–2016 period and binned as a function of 
climatological mean precipitation (P, on the x-axis) and air temperature (T, on the y-axis). Black 
dots show bins with average values statistically different from zero (t-test; p-value≤0.05). (b) 
Temporal variations of sensitivities computed over a 13-year moving window for moisture 
supply- and atmospheric demand-limited regions and the whole globe. (c) Temporal variations of 
sensitivities computed separately over the 1982–1999 and 2000–2016 periods for different 
regions and expressed in terms of absolute (∆𝑎𝑎𝑎𝑎𝑎𝑎, on the x-axis) and relative variations (∆𝑟𝑟𝑟𝑟𝑟𝑟, on 
the y-axis). Results for each single LAI-HMTE combination are shown in separate markers; those 
with a black outline represent ensemble averages, while overlaid black dots indicate statistically 
significant changes in sensitivity (t-test, p-value≤0.05). Sensible fluxes are derived by 
subtracting LE from RN, with LE retrieved from MTE46. (d) as (a), (e) as (b) and (f) as (c) but 
derived from “native” H estimates directly provided by MTE. The spatial domains of supply- 
and demand-limited regions are shown in Supplementary Fig. 5.        
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Figure 7. Spatial and temporal variations of sensitivity and effects as a function of human 
land-use management. (a-c) Relative variations of latent heat ( 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
), sensible heat ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
) and 

Bowen ratio ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

) to LAI changes computed separately over the 1982–1999 and 2000–2016 
periods for different regions (∆𝑟𝑟𝑟𝑟𝑟𝑟, Methods) and across a gradient of crop fractions ranging 
between 30% and 70%. (d-f) Long-term effect of greening on latent heat (𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿), sensible heat 
(𝛿𝛿𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿) and Bowen ratio (𝛿𝛿𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿) computed for the whole 1982-2016 period (on the y-axis) 
binned as a function of the aridity index (on the x-axis) (Eq. (3), Methods). Results of the 
Kolmogorov-Smirnov test are shown in labels and reflects the significance level (pks) to reject 
the null hypothesis of dissimilar curve with respect to the 50% crop curve. The spatial domains 
of supply- and demand-limited regions are shown in Supplementary Fig. 5.        
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   δLAI  
[decade-1] 

∂LE
∂LAI

 
[Wm-2] 

∂H
∂LAI

 
[Wm-2] 

∂B
∂LAI

 
[-] 

δLELAI 
[Wm-2decade-1] 

δHLAI 
[Wm-2decade-1] 

δBLAI 
[decade-1] 

  #pixels avg s.e. avg s.e. avg s.e. avg s.e. avg s.e. avg s.e. avg s.e. 

Supply-limited regions All biomes 2011 0.066 0.023 8.183 0.869 -6.811 0.872 -0.333 0.034 0.413 0.088 -0.346 0.080 -0.017 0.003 

Demand-limited regions All biomes 4768 0.106 0.034 2.545 0.332 -2.140 0.288 -0.090 0.013 0.210 0.037 -0.166 0.034 -0.008 0.002 

Globe All biomes 6779 0.091 0.027 3.658 0.446 -3.256 0.409 -0.139 0.017 0.262 0.049 -0.220 0.047 -0.010 0.002 

 

Table 1. Trends in growing season averaged LAI, sensitivity of surface energy partitioning terms to LAI changes and 
corresponding LAI-related trends for supply-, demand-limited zones and the whole globe. Values report the average value (avg) and 
the corresponding standard error (s.e.). The field “#pixels” expresses the sample size in terms of number of 1° grid cells. 
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ET RN T P SWin Vegetation CO2 Temporal coverage 
GLEAM ERAi ERAi MSWEP ERAi VOD N 1982-2016 

MTE NA (ERAi) CRU GPCC NA (ERAi) fAPAR (GIMMS3g) N 1982-2012 
PLSH NA (ERAi) NCEP2 GPCP, GPCC, CRU SRB, CERES NDVI GIMMS3g Y 1982-2015 

BESS_LAI3gV3 NA (ERAi) ERAi NA (MSWEP) ERAi LAI GIMMS3g v3 Y 1982-2016 
BESS_TCDRV4 NA (ERAi) ERAi NA (MSWEP) ERAi LAI TCDR v4 Y 1982-2016 
BESS_GLASSV3 NA (ERAi) ERAi NA (MSWEP) ERAi LAI GLASS v1 Y 1982-2016 

 

Table 2. Climate and vegetation drivers used in each ET product. Multiple linear regression models (eq. 1, Methods) use the 
climate dataset consistent for each ET product as reported in the table. In brackets are reported the reference dataset when no specific 
forcing (NA) is used for ET retrievals. Acronyms and sources of each climate product are described in the following lines:  

• ERA-interim (ERAi, http://apps.ecmwf.int/datasets/);  
• Climatic Research Unit ts 3.22 (CRU, http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_3.22);  
• Multi-Source Weighted-Ensemble Precipitation v1.2 (MSWEP, http://www.gloh2o.org/);  
• NCEP/DOE AMIP-II Reanalysis (NCEP2, https://www.cpc.ncep.noaa.gov/products/wesley/reanalysis2/);  
• Global Precipitation Climatology Centre Version 6.0 (GPCC, https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html);  
• Global Precipitation Climatology Project Version 2.1 (GPCP, https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html);  
• World Climate Research Programme/Global Energy and Water-Cycle Experiment Surface Radiation Budget (SRB) 

Release-3.0 datasets https://gewex-srb.larc.nasa.gov/common/php/SRB_data_products.php);  
• Clouds and the Earth’s Radiant Energy System (CERES, https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degSelection.jsp)  
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