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Abstract 40 
 41 
The added value of using Regional Climate Models (RCMs) to downscale data from General 42 
Circulation Models (GCMs) has often been questioned and researched. Although several 43 
studies have used different methods to identify (and in some cases quantify) the added value, 44 
there is still a need to find a general metric that quantifies the added value of any variable. 45 
This paper builds on past studies to propose a new metric of added value in the simulation of 46 
present-day climate which measures the difference in the probability density functions (PDFs) 47 
at each grid-cell between a model and an observation source, and then compares the results 48 
of the RCM and GCM in order to spatially compute the added value index. The same method 49 
is also adapted to quantify the climate change downscaling signal in a way that is consistent 50 
with the present-day metric. These new metrics are tested on the daily precipitation output 51 
from the EURO-CORDEX and CORDEX-CORE projection ensembles and reveal an overall 52 
positive added value of RCMs, especially at the tail-end of the distribution. Higher added value 53 
is obtained in areas of complex topography and coast-lines, as well as in tropical regions. 54 
Areas with large added value in present-day climate are consistent with areas of significant 55 
climate change downscaling signal in the RCP 8.5 far future simulations, and when the 56 
analysis is repeated at a low-resolution. The use of different resolution observations shows 57 
that the added value tends to decrease when models are compared to low-resolution 58 
observation datasets.   59 
 60 
 61 

1. Introduction 62 
 63 
Many institutions (using several RCMs) have completed numerous high-resolution (0.11° and 64 
0.22°) climate projections over regions worldwide as part of the COordinated Regional climate 65 
Downscaling EXperiment (CORDEX; Giorgi et al., 2009; Jones et al., 2011; Gutowski et al. 66 
2016). In particular, 55 simulations were completed within the EURO-CORDEX initiative 67 
(Jacob et al., 2013; 2020). Downscaling low-resolution data to a high-resolution using a 68 
Regional Climate Model (RCM) is a computationally costly process, and despite the statistical 69 
analysis and validation of these simulations against various observation sources (Sanchez-70 
Gomez et al., 2009; Kjellström et al., 2010; Lenderink, 2010; Jacob et al., 2011, 2014; Kotlarski 71 
et al., 2014; Aalbers et al., 2018), a comprehensive assessment of the added value provided 72 
by such a downscaling process has not been carried out, so that the added value issue is still 73 
a point of debate (Di Luca et al., 2013; Hong et al., 2014; Laprise, 2014; Xue et al., 2014; Di 74 
Luca et al., 2015;  Torma et al., 2015; Di Luca et al., 2016; Giorgi et al., 2016; Prein et al., 75 
2016; Soares et al., 2018; Qiu et al., 2019).  76 
 77 
Although one might argue that higher resolution should in principle improve all aspects of a 78 
simulation, the added value of downscaling depends on the variable and regional context of 79 
interest. For example, a higher resolution is always better at resolving complex topography 80 
and coastlines, and consequently the intensity and spatial distribution of precipitation over 81 
such regions should be improved when downscaled. Similarly, extreme precipitation events 82 
are most often very localized in space and time, and thus increasing resolution should lead to 83 
better simulations. The simulation of fine-scale circulations and their effects on regional 84 
climates, such as due to sea breezes or mesoscale convective systems, would also in general 85 
benefit from increased resolution (e.g. Rummukainen 2016; Giorgi 2019). 86 
 87 
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While the effects of improved horizontal resolution in such cases is easily observed, it may not 88 
translate into more accurate or credible climate change information (Barsugli et al. 2013). This 89 
raises the issue of how to assess improvements in downscaled simulations over those 90 
provided by the forcing reanalyses or GCMs, and thus, how to assess their added value. 91 
Towards this goal, there have been many attempts to identify the added value of a RCM 92 
compared to the driving GCM (e.g. Giorgi et al., 1994; Kanamitsu & Kanamaru, 2007; Coppola 93 
et al., 2010; Kanamitsu & DeHaan, 2011; Di Luca et al., 2013; Torma et al., 2015; Di Luca et 94 
al. 2016; Giorgi et al., 2016; Lucas-Picher et al., 2017; Fantini et al., 2018; Soares et al., 2018). 95 
In particular, one of the metrics often used to quantify added value is the probability distribution 96 
function (PDF) of a given variable (e.g. Torma et al., 2015; Fantini et al., 2018), as it describes 97 
the complete characteristics of the variable.  98 
 99 
One of the quantitative metrics used to measure how a model reproduces observed PDFs is 100 
the Kolmogorov-Smirnov distance (Chakravarti et al., 1967), which Torma et al. (2015) used 101 
to compare the maximum difference between the Cumulative Distribution Functions (CDFs) 102 
of a model and an observation CDF. Fantini et al. (2018) employed a similar metric, the 103 
Kullback-Leibler divergence (Kullback and Leibler, 1951), which compares the mean 104 
difference of two PDFs. Both metrics, applied to daily precipitation PDFs, indicated that high-105 
resolution RCMs performed better than the coarse-resolution driving models. Fantini et al. 106 
(2018) also showed that the greatest added value was found in regions of complex 107 
topography, such as the Alps, Italy, and Norway. Instead of focusing on differences, Soares 108 
et al. (2018) used the Perkins Skill Score (Perkins et al., 2007) to measure the common area 109 
between the simulated and observed distribution, which was then used to compare the gain 110 
(or loss) as a result of high-resolution downscaling. They showed that added value was 111 
present throughout the European region (especially for extreme precipitation) with some of 112 
the highest values obtained in the Alpine region.  113 
 114 
The temporal correlation skill has proven effective to assess the spatial distribution of an 115 
added value metric in a point-by-point analysis (Kanamitsu and Kanamaru, 2007; Kanamitsu 116 
& DeHaan, 2011; Prein et al. 2016). In these studies, a substantial geographical variability of 117 
the added value metric was shown, even with areas of negative added value, thus highlighting 118 
the importance of showing the geographical distribution of relevant metrics. However, this 119 
correlation-based added value index cannot be used within the context of simulations driven 120 
by GCMs since no substantial temporal correlation can be expected with an observation time-121 
series due to the lack of real-world data assimilation.  122 
 123 
A good alternative is to use spatial correlation (Di Luca et al., 2016; Prein et al., 2016). Prein 124 
et al. (2016) used the fraction skill score (Roberts and Lean, 2008) and spatial correlation of 125 
each model with observations to compare the added value of low and high-resolution runs of 126 
RCMs. The study analysed European observation data-sets separately in order to visualise 127 
the spatial variation of added value. Di Luca et al. (2016) also used spatial correlation and the 128 
mean square error to quantify added value (Di Luca et al., 2013). These studies showed 129 
substantial improvements in the RCM simulations in most regions analysed, with some 130 
exceptions during different seasons.  131 
 132 
A point-by-point analysis of PDFs can thus be an optimal solution to spatially assess the added 133 
value of a RCM, since it includes both a comprehensive representation of the characteristics 134 
of a variable and its geographical variation. Therefore this paper presents a new metric to 135 
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quantify the added value of a RCM with respect to its driving GCM based on a point-by-point 136 
PDF analysis of daily precipitation. We apply our approach to the European region via the 137 
large ensemble of RCM projections produced as part of the EURO-CORDEX program (Jacob 138 
et al., 2013; 2020) and on different continents via the ensemble of projections recently 139 
completed as part of the CORDEX-CORE program (Gutowski et al., 2016). The choice of 140 
precipitation is due to the availability of high-resolution observation data in Europe and the 141 
rest of the world, and to be able to compare with past studies (Torma et al., 2015; Giorgi et 142 
al., 2016; Prein et al., 2016; Fantini et al., 2018). Moreover, precipitation is strongly affected 143 
by topography and by fine-scale spatial and temporal processes, and thus downscaling can 144 
be especially useful in improving its simulation.  145 
 146 
Quantification of the added value for a present-day simulation can be a relatively 147 
straightforward task if appropriate observations are available, but it is difficult to quantify the 148 
existence of added value in a future climate simulation. A novel way we propose to assess the 149 
potential for added value in climate change signals, is through the use of the same metric as 150 
for the present-day simulations but applied to the RCM and GCM change signals. This allows 151 
us to identify when and where the change signals diverge and how different they are (Giorgi 152 
et al., 2016). If these differences are shown to be large over the same locations where an 153 
added value was proven in the present climate validation exercise, then one could assume 154 
that the RCM projection could potentially be more accurate compared to the GCM’s. The 155 
proposed methods are described in the next section. 156 
 157 

2. Methods 158 
 159 
We introduce here a new method for quantifying the added value of a variable and 160 
representing it spatially. This method stems from the spatial downscaling signal described by 161 
Giorgi et al. (2016) and the spatial correlation skill mentioned in Rummukainen (2016). Other 162 
studies (Kanamitsu & DeHaan, 2011; Torma et al., 2015; Fantini et al., 2016) use different 163 
metrics to describe the difference between simulated and observed PDFs, however, these are 164 
based only on parts of the distribution. Instead our method quantifies the added value by 165 
computing the absolute values of the differences across the entire PDF distributions, so that 166 
these differences do not cancel each other out. We then apply this method at each grid-point 167 
of the model domain so that we provide information on the spatial distribution of the added 168 
value.  169 
 170 
For a variable of interest (in this case daily precipitation, including dry days), the method 171 
requires data from a RCM, the driving GCM, and an observation source (OBS; ideally of high-172 
resolution) for the same time-period and frequency. Once the three datasets are interpolated 173 
onto a common grid, the PDFs can be calculated in a consistent way so that  each grid point 174 
(for the 3 data-sets) has its own distribution, resulting in a grid of PDFs (hereafter referred to 175 
as PDF-grid). In order to ensure a fair comparison, the bin size should be identical for each 176 
grid point, however the number of bins must be independent to properly represent the different 177 
PDFs. In this paper, a bin-size of 1 mm/day is used in order to resolve high precipitation events 178 
in the tail-end of the PDFs, since the analysis is focused on wet extremes. The calculation of 179 
the added value index (see below) obviously depends on the bin size, and in the Appendix we 180 
present a sensitivity analysis of our results to a range of bin sizes. Furthermore, the grid-point 181 
maximum necessary for the computation of each PDF is taken as the maximum of all datasets 182 
at that grid point.  183 
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 184 
The resulting PDF-grid for a model is compared to the PDF-grid of the OBS by using the sum 185 
of the absolute differences between the model (M) and the observation (O) across all bin 186 
values (𝜈𝑡), divided by the sum of O. Here, we refer to this as the Relative Probability 187 
Difference, D (described in equation 1 and Figure 1), where N is the number of events in the 188 
dataset for a given bin 𝜈, and 𝛥𝜈 is the bin size of the variable. This calculation is done for 189 
both the RCM and GCM and the resulting plots describe the spatial distribution of DM with 190 
respect to the observations. In this manner, the difference value DM is a unitless quantity which 191 
represents the compounded discrepancies between the distributions. A smaller value of DM 192 
indicates a better performance by the model.  193 
 194 

𝐷𝑀 =
𝛴𝜈=1
𝜈𝑡 |(𝑁𝑀−𝑁𝑂)𝛥𝜈|

𝛴𝜈=1
𝜈𝑡 (𝑁𝑂𝛥𝜈)

   (1) 195 

 196 
 197 
The Added Value index (Ai) is thus quantified by comparing DGCM to DRCM (equation 2), where 198 
a positive (negative)  index represents an improvement (degradation) of the RCM results 199 
compared to the GCM ones, as suggested by Di Luca et al. (2015). The quantity Ai is also 200 
unitless, and is given by  201 

𝐴𝑖 = 𝐷𝐺𝐶𝑀 − 𝐷𝑅𝐶𝑀   (2) 202 
 203 
A problem can arise when the PDF of the GCM is missing some bin-data, for which the 204 
corresponding RCM and OBS bin-data exist. This is common, for example, at the tail-end of 205 
the distribution which GCMs tend to fail to capture (Fantini et al., 2018, Torma et al., 2015). 206 
Such cases represent an important contribution to the added value calculation, but they cannot 207 
be quantified properly by this method because in such situations DGCM is always equal to 1, 208 
while DRCM can exceed this value and thus produce a misleading negative value to Ai. 209 
Therefore, a conditional assumption is introduced by which if NGCM of a specific bin is zero, but 210 
the corresponding NRCM and NO are non-zero, that bin contributes 0 relative probability 211 
difference to the final DRCM, thereby ensuring a positive contribution to the index Ai. In other 212 
words, we assume that the RCM adds value to the GCM if it simulates events in bins for which 213 
the observations have events and the GCM does not simulate any, regardless of how many 214 
events the RCM simulates. The inverse situation can obviously occur (although in fact it rarely 215 
does), in which the RCM misses data in a bin where both the OBS and GCM simulate events. 216 
Also in this case the same procedure is applied, so that neither the RCM or the GCM are 217 
favored. We acknowledge that this is an assumption based on a subjective assessment that 218 
it is more important to capture the existence of events in a bin than to exactly simulate the 219 
number of such events, an assumption especially important for the tail end of the distribution 220 
which is characterized by small numbers of rare events.    221 
 222 
Some studies (Torma et al., 2015; Prein et al., 2016; Fantini et al., 2018) have shown how 223 
GCMs do not resolve precipitation extremes as well as RCMs. For this reason, the method 224 
above can also be modified to focus on a particular segment of the distribution, for example 225 
the 95-100 percentile interval. In such a case, the percentile values of the observation dataset 226 
are used as thresholds for the PDFs, and the part of the complete PDF (as in Figure 1) that 227 
contributes to this percentile interval would be the only data included in equations 1 and 2. 228 
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Since the 95th percentile varies from one grid-point to another, the threshold applied must be 229 
specific to that grid-point and cannot be the field-mean over the analysis domain. The 95-100 230 
percentile interval is not an arbitrary choice, as studies have shown that substantial added 231 
value in a RCM can be found at the tail-end of the precipitation distribution (Torma et al., 2015; 232 
Fantini et al., 2018). 233 
 234 
In an analogous way, a climate change downscaling signal, (ADS in equation 4) can be defined 235 
from the change between a PDF in a future climate period and a corresponding PDF in a 236 
historical period of the simulation. In this case, instead of comparing the model data to an 237 
observation dataset, we compare the future data (f) to the historical data (h) of the same 238 
simulation (as shown in equation 3). This is similar to the method described by Giorgi et al. 239 
(2016). In this case, the conditional assumption applied to equation 2 (where a model does 240 
not resolve a particular bin) cannot be applied, as this data is not compared to any 241 
observations. The larger the value of this downscaling signal, the more different the projected 242 
and reference PDFs are, and the magnitude of ADS is proportional to this difference. The 243 
climate change downscaling signal, ADS is described in the same manner as Ai, i.e. a unitless 244 
quantity expressed as. 245 
 246 

𝐷𝑀𝑓 =
𝛴𝜈=1
𝜈𝑡 |(𝑁𝑀𝑓−𝑁𝑀ℎ)𝛥𝜈|

𝛴𝜈=1
𝜈𝑡 (𝑁𝑀ℎ𝛥𝜈)

   (3) 247 

 248 

𝐴𝐷𝑆 = 𝐷𝐺𝐶𝑀𝑓 − 𝐷𝑅𝐶𝑀𝑓   (4) 249 

 250 
The quantity DMf in equation 3 describes a relative climate change signal within a given model 251 
M; NMf is the value of the future period PDF at bin 𝜈 for model M; and NMh is the corresponding 252 
bin value in the historical period PDF of the same model M. The ADS is the difference of the 253 
DMf signals of the RCM and GCM, i.e. it is based on the climate change signals in the driving 254 
and downscaling models (hence climate change downscaling signal). Here, large positive or 255 
negative values of ADS indicate a larger climate change downscaling signal, hence a greater 256 
difference between the RCM and GCM resulting in the potential for added value. ADS values 257 
close to 0 describe a weak downscaling signal. The sign of ADS does not quantify which model 258 
is ‘better’, but rather how different the two PDFs are. A positive (negative) value of ADS 259 
indicates a situation where the climate change signal of the GCM (RCM) in a given segment 260 
of the PDF is greater than that of the RCM (GCM). When the analysis is restricted to a specific 261 
percentile interval (such as 95-100, as mentioned above), since no observation data is 262 
included in this comparison, the percentile threshold is obtained from the historical data-set.   263 
 264 
 2.1 Simulated data 265 
 266 
For our analysis we use two GCM-RCM projection ensembles. The first is the EURO-267 
CORDEX ensemble (Jacob et al., 2013) of 55 RCM simulations at 0.11° (Table 1). This 268 
consists of 130-year climate projections (from 1970 to 2100) for the Representative 269 
Concentration Pathway, RCP 8.5 (Moss et al., 2008), with an incomplete matrix of 12 RCMs 270 
driven by 8 different GCMs (one should note that simulations run by MOHC-HadGEM2-ES do 271 
not include the year 2100). The analysis is carried out on daily precipitation, with a special 272 
focus on the higher percentiles of the distributions. The second data-set is the CORDEX-273 
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CORE ensemble (described in Table 2; Mearns et al. 2017; Remedio et al. 2019; Coppola et 274 
al. submitted; Teichmann et al. submitted), which includes 0.22° resolution simulations run by 275 
two RCMs, the RegCM4 (Giorgi et al., 2012) and REMO2015 (Jacob et al., 2012; Remedio et 276 
al., 2019), each driven by three GCMs, for 8 non-European CORDEX domains: Africa; North, 277 
Central, and South America; East, South-East, and South Asia; and Australasia.   278 
 279 
The method requires that all data, i.e. RCM, GCM, and observations are defined on the same 280 
horizontal grid. This raises two issues; interpolating the GCM to a higher resolution grid may 281 
create unrealistic values, while interpolating the RCM to a lower resolution grid degrades the 282 
spatial signal and the PDF (Prein et al., 2016). The latter is especially true at the tail-end of 283 
the distribution (Torma et al., 2015), where the largest added value is expected. To account 284 
for both issues, the analysis is conducted on two grids (using distance-weighted average 285 
interpolation), the RCM grid (0.11°) which allows us to have a more accurate representation 286 
of the spatial distribution of the index, and a 1.00° grid to ensure that the results are inter-287 
comparable.  288 
 289 
 290 
2.2 Observation Sources 291 
 292 
The added value calculations are dependent on the observation data used as reference, thus 293 
multiple observation datasets are used to test the method. These are reported in Table 3, and 294 
additional information on station density can be found in Prein et al. (2016) and Fantini et al. 295 
(2018). The time period available for the different datasets is not uniform so a different time 296 
period is used for each dataset. The analysis of the EURO-CORDEX data is compared to two 297 
observation sources: the EOBS v20e and a composite of 9 sub-regional observations, 298 
hereafter referred to as ‘European Composite Observations’ (ECO).  299 
 300 
The CORDEX-CORE analysis is also carried out using multiple observation sources (reported 301 
in Table 4). The CPC data-set is used to assess the added value compared to low-resolution 302 
observations, while the TRMM dataset provides a comparison between satellite and station-303 
based observations. The regional observation datasets GCOSGHCN, IMD, and APHRODITE 304 
were combined into a single data-source, hereafter referred to as Global Composite 305 
Observations (GCO). Similarly to the European observation sources, the time periods used 306 
here are different for each dataset. However, since the indices are calculated using the entire 307 
dataset and not on a year by year basis, this should not affect the basic conclusions of the 308 
analysis. 309 
 310 
 311 

3. EURO-CORDEX Analysis 312 
3.1 Added value for the present-day validation 313 
 314 
Figure 2 shows the relative probability differences for the GCM and RCM ensembles, and the 315 
resulting added value index for the EURO-CORDEX ensemble. The relative probability 316 
difference of the GCM ensemble is shown to be significantly larger than that of the RCM 317 
ensemble virtually everywhere, resulting in a positive added value throughout the EURO-318 
CORDEX domain. This is particularly the case in areas of complex topography, where the 319 
added value is therefore maximum.  320 
 321 
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Figure 2 also provides a comparison of the added value calculated on the 0.11° and 1.00° 322 
grids. Clearly, the results are consistent for both the high and low resolution grids, and the 323 
geographical distribution of the added value is also maintained (although with less spatial 324 
detail) for the lower resolution grid. The added values calculated using the ECO and EOBS 325 
observation datasets are very similar, although slightly smaller in EOBS over some regions 326 
(e.g. Scandinavia, the British Isles, France, and the Carpatians). 327 
 328 
Figures S1-S6 show the added value plots for individual simulations, and show a greater 329 
dependency on the GCM field than the RCM field (as also reported by Di Luca et al., 2016). 330 
The ensemble members show a large predominance of positive added value, although some 331 
members exhibit some areas of negative added value. This latter result mostly occurs due to 332 
a low relative probability difference (i.e. good performance) obtained by the driving GCM, such 333 
as HadGEM2-ES and MPI-ESM-LR (Figures S1 and S4). Conversely, the simulations 334 
providing the highest added value (Figures S3 and S6) are the ones driven by NorESM1-M 335 
and CNRM-CM5, where both GCMs display the highest relative probability difference (low 336 
performance). The only exception is the ALADIN53 driven by CNRM-CM5 which displays a 337 
very high relative probability difference (low performance) compared to the other RCMs.  338 
 339 
Although the added value at 0.11° resolution (Figure 2) is larger over areas of complex 340 
topography (for both ECO and EOBS), the signal appears to be smaller around the highest 341 
peaks. For example, over the Alpine region this may be attributed to localized areas with a low 342 
density of stations in the observation source (Isotta et al. 2014) which produce an apparent 343 
reduction of added value. Another reason might be the lack of an undercatch gauge correction, 344 
which is especially relevant during windy and snowy conditions and can account for up to 30% 345 
underestimation of real precipitation by gauge data (e.g. Adam & Lettenmaier, 2003).   346 
 347 
The added value shown in Figure 2 is calculated using the entire PDF. If different percentiles 348 
of the distribution are considered, the resulting added value may be quite different. Figure 3 349 
shows the added value as a function of the percentile interval. There are two possible choices 350 
of intervals, the first keeps one end of the interval fixed to zero and moves the other end from 351 
zero to 100 (0-x), and the second keeps the far end fixed to 100 and moves the near end from 352 
0 to 100 (x-100).  353 
 354 
When the 0th percentile is included (case 0-x), the added value of the RCM ensemble-mean 355 
gradually increases with the upper-bound threshold. This suggests that a higher added value 356 
is found at the tail-end of the distribution. The intervals that do not include the 0th percentile 357 
(case x-100), show a substantially higher added value, even for the lower percentile intervals. 358 
This implies that the RCMs perform less adequately at the 0th percentile. 359 
  360 
When omitting the 0th percentile (case 5-100), the added value is relatively constant until about 361 
the 50th percentile and then decreases gradually until it reaches a minimum around the 90th 362 
percentile, after which the added value increases sharply when compared to ECO. To 363 
understand this behaviour, in Figure 4 we show the observed and simulated PDFs over 364 
different sub-regions covered by the ECO data-set. It can be seen that while the RCM PDF 365 
reproduces quite well the observed one, the GCM overpredicts the frequency of low intensity 366 
events and underpredicts that of high intensity ones. In other words, there is a point in which 367 
the GCM PDF intersects the observed PDF, and this point is located around the 90-95th 368 
percentile of the observed distribution. For this reason, as the percentile interval approaches 369 
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this intersection the relative probability difference of the GCM ensemble will be closer to that 370 
of the RCM, thus resulting in the dip seen in Figure 3. 371 
 372 
Figure 5 shows the geographical distribution of the added value calculated using ECO (at 373 
0.11°) at different percentile intervals. Here, the ‘0-x’ intervals are positive throughout the PDF 374 
spectrum and increase in magnitude at higher intervals. This is consistent with the results 375 
presented in Figure 3. When the 0th percentile is omitted, the ‘x-100’ intervals show a variability 376 
that is also consistent with that of Figure 3. The 50-100 percentile interval has a larger 377 
magnitude than the 0-50 interval, and at higher intervals the added value decreases slightly 378 
in many regions due to the GCM PDF crossing the observed PDF, as explained earlier and 379 
shown in Figure 4. The added value increases again (and peaks) at the 99-100 percentile 380 
interval, after which a second slight decrease in the added value is observed (as explained 381 
below). 382 
 383 
The added value compared to the EOBS data shows similar results when looking at the same 384 
regions covered by ECO (Figure 3). However, the results in the other areas are very different (as 385 
seen in Figure 6), and in many regions, e.g. Russia, we even see a decrease in the added 386 
value. This is likely caused by the low density of station observations over these areas 387 
(Haylock et al., 2008). The pronounced spatial diversity in these results also illustrates the 388 
importance of using an observation data-set of equal or higher resolution than the model’s 389 
throughout the entire analysis domain when assessing the added value.  390 
 391 
Another interesting feature of the added value of the ensemble mean is the slight decrease at 392 
the 99.9-100 fraction when compared to ECO (Figure 5). The number of events occurring 393 
above the 99.9 percentile threshold tends to be very small, with numerous bins having zero 394 
events. Despite the improvement in the RCM representation of the tail, the magnitude of these 395 
extreme events is often different from the observations (and would thus correspond to a 396 
different bin value). Since this added value metric is comparing the frequency of the events in 397 
each bin, some of these cases would not be comparable. This means that the non-zero events 398 
for the GCM, RCM, and observations above this threshold may not always coincide in the 399 
same bin, which results in a more negative apparent added value. Since the frequency of 400 
events at this extreme percentile interval is very small compared to the rest of the distribution, 401 
this problem does not influence the calculations for the entire distribution.  402 
 403 
A similar effect is also seen in the 99.9-100 added value compared to EOBS (Figure 6), which 404 
shows a large positive added value for the 99.9-100 percentile interval fraction in many areas, 405 
but a large negative added value in others. This is likely a combined effect from the small 406 
number of events occurring at this percentile interval, and the low station density of some 407 
areas. 408 
 409 
Our results indicate that the best observation source to use in order to assess the 0.11° EURO-410 
CORDEX simulations is the ECO, since all the observation data-sets are of the same 411 
horizontal resolution as the model or finer. Figure 7 shows the added value of each ensemble 412 
member at the 99-100 percentile interval compared to ECO. This portion of the PDF is where 413 
the ensemble mean shows the highest added value. The positive added value is consistent in 414 
all RCM members, with the NorESM-1 driven simulations displaying the greatest values.  415 
 416 
 417 
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3.2 Added value for the climate change projections 418 
 419 
An observation-based analysis cannot be used to quantify the added value of future 420 
simulations. To address this issue, the downscaling signal described by Giorgi et al. (2016) is 421 
combined with our method, as described in Section 2, to provide a downscaling signal based 422 
on the PDFs. As an illustrative example, the far future time slice (2080-2099) is compared to 423 
the 1995-2014 reference period. The 90, 95, and 99 ‘x-100’ percentile intervals are shown in 424 
Figure 8, together with the added value compared with ECO for the same intervals. 425 
 426 
Here, the downscaling signal near complex topographic regions and coastal areas becomes 427 
increasingly visible at the higher percentile intervals, which is consistent with the added value 428 
in the same regions. The strongest downscaling signal is found in the 99-100 percentile 429 
interval, and is visible in areas such as Scandinavia, the British Isles, and mainland Europe, 430 
where the latter shows a pronounced RCM signal (negative) that does not always appear to 431 
be linked to topography or coastal areas. This implies that the RCM projects a larger climate 432 
change signal than those obtained by the GCM, as also shown by Coppola et al. (submitted). 433 
The high added value obtained over these regions when comparing to observations might 434 
suggest that the RCM climate change signal is more reliable than that of the GCM, similar to 435 
the Realised Added Value described by Di Virgilio et al. (2020). 436 
 437 
This downscaling signal is also most pronounced at the highest percentile intervals, as the 438 
change in daily precipitation is greatest for extreme events (where also here it is dominated 439 
by a strong RCM signal). Furthermore, the spatial structure of the P99 change signal appears 440 
similar to the one seen in Coppola et al. (submitted), and also conforms with the downscaling 441 
signal reported by Giorgi et al. (2016). Once again, the higher percentile intervals show a 442 
stronger signal, not only because the precipitation change is larger at the extremes but also 443 
because GCMs tend to underpredict the tail of the distribution.  444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 

4. CORDEX-CORE Analysis 453 
4.1 Added value for the present-day validation 454 
 455 
We now move to the analysis of the CORDEX-CORE ensemble described in Section 2.1. 456 
Consistent with the EURO-CORDEX results, the added value of the complete daily 457 
precipitation distribution (Figure S9) is mostly positive in all regions, with the most positive 458 
values occurring in complex topographical areas. However, a few notable exceptions show a 459 
negative added value, such as areas of western North America, Sahara, South Asia, and 460 
Australia. This negative added value is attributed to the lower percentile intervals (as explained 461 
in Section 3.1, and shown in Figures 3 and S7), since a lower added value in these intervals 462 
would carry a greater weight on the overall distribution. 463 
 464 
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The added value of higher percentile intervals (Figures S10-S13) is consistent with this 465 
assessment. Figure 9 focuses on the added value of the 99-100 percentile interval of daily 466 
precipitation compared to the four observational datasets (described in Section 2.2).  This 467 
percentile interval was shown to have the most positive added value in the EURO-CORDEX 468 
analysis (see Section 3.1) and this is confirmed in the CORDEX-CORE ensemble (Figures 469 
S10-S13). The added value is strongly positive in the tropics, characterized by the occurrence 470 
of more intense precipitation events than in mid-latitudes, which are evidently not captured by 471 
the GCMs. 472 
 473 
The added value with respect to CHIRPS (Figure 9) shows some areas of high negative values 474 
over African countries such as the Democratic Republic of Congo and South Africa. This may 475 
be at least partly due to the data sparsity in these areas (Funk et al., 2015), which would 476 
especially dampen the tail-end of the distributions, and thus favour the GCMs. It is important 477 
to note that the rest of the dataset was shown to be reliable (Funk et al, 2015). This negative 478 
added value is also visible when using the GCO dataset (especially for APHRODITE), and 479 
these regions also correspond to areas of low station density (Yatagai et al., 2009). Similarly, 480 
lower station densities (Menne et al., 2012) likely contribute to the area of negative added 481 
value in western North America. Furthermore, these areas of negative added value 482 
correspond to areas with very low moisture around the world. The aridity of these regions (and 483 
hence the larger number of dry-days; Daly et al., 1994) likely contributes to this low added 484 
value. This is somewhat similar to the added value associated with the EOBS (as explained 485 
in Section 3.1, and shown in Figure 6), and to a smaller degree with ECO (Figure 6).  486 
 487 
All regional observations show a significant increase in the added value for the higher 488 
percentile intervals.  The CPC shows a stronger signal where positive added value is found, 489 
and more areas with negative added value than the other observation sources. This wide 490 
variability in added value (similar to the case of  low station density areas in EOBS in Figure 491 
6), is attributed to the low resolution of the data-set. Out of all the data-sets, the added value 492 
compared to TRMM shows the most consistently positive signals geographically. 493 
 494 
 495 
4.2 Added value for the climate change projections 496 
 497 
The climate change downscaling signal for the CORDEX-CORE analysis exhibits results 498 
similar to the EURO-CORDEX analysis (Section 3.2). Figure 10 compares the 99-100 499 
percentile interval climate change downscaling signal with the added value compared to 500 
TRMM (which was found to produce the strongest added value). The 99-100 percentile 501 
fraction not only shows the highest added value, but also the strongest climate change 502 
downscaling signal.  503 
 504 
While both signals are spatially very similar, they are not identical. A distinct topographical 505 
influence is also visible in the climate change downscaling signal, while a very strong RCM 506 
signal dominates over the equatorial regions. Once again, this implies that the RCMs are 507 
projecting a larger change in events than the GCMs in locations of strong added value with 508 
respect to observations.  509 
 510 
 511 
 512 
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5. Conclusions 513 
 514 
In this paper, a new method for quantifying the added value of RCMs is described and tested 515 
using the EURO-CORDEX and CORDEX-CORE ensembles of GCM-driven RCM projections. 516 
The method is based on the intercomparison of PDFs for a given variable, in this paper daily 517 
precipitation, at the grid point level. It requires the comparison of GCM and RCM PDFs with 518 
corresponding observed data-sets at the same horizontal resolution and can be applied not 519 
only to estimate the added value in present-day climate but also the potential added value in 520 
the future projections. In our study we also tested the robustness of the results to different 521 
observation data-sets. An important caveat of our method is that, if at a given bin the 522 
observations have events and the RCM (GCM) simulates events while the GCM (RCM) does 523 
not, then the RCM (GCM) adds value regardless of how many events it simulates. Thus, we 524 
assume that it is more important for a model to capture events in a given bin where there are 525 
observations than to reproduce the exact number of observed events. This situation occurs in 526 
particular towards the tail end of the distributions which are often not captured by the GCMs.  527 
 528 
The RCM added value was found to be predominantly positive for the EURO-CORDEX 529 
ensemble mean, and became larger when assessing only the higher percentile intervals of 530 
the daily precipitation distribution (despite a higher uncertainty due to the decrease in 531 
frequency). This was also generally true for the CORDEX-CORE regions where the most 532 
positive added value was produced for the 99-100 percentile interval. The contribution of the 533 
lowest percentiles of the PDF substantially reduced the added value of the overall distribution 534 
due to the higher frequency of these events.  535 
 536 
The observation sources used for comparison had a significant influence on the added value 537 
obtained. Higher resolution observations were more adequate in the identification of added 538 
value at fine scales, since these were more comparable to the model resolution and also had 539 
a better record of extreme events. Low-station density in the station-based gridded 540 
observations, which smooth out especially the tails of the distributions, could potentially 541 
produce a ‘false low or negative added value’. Overall, this method supports previous studies 542 
(Fantini et al., 2018; Torma et al., 2015) in showing that RCMs provide added value by better 543 
representing extreme events.  544 
 545 
The method was also used to produce a PDF-based climate change downscaling signal for 546 
future simulations, which was found also to increase at higher percentile intervals and in areas 547 
characterized by complex topography. The CORDEX-CORE ensemble showed this signal to 548 
be strongest in the equatorial regions.  549 
 550 
The method described in this study explicitly demonstrates that RCMs provide an added value 551 
for precipitation in complex topographical regions, coastal areas and islands, as well as in 552 
tropical regions, especially for the tail-end of the distribution (extremes), as a result of the 553 
higher resolution of the downscaling models. Although the method was only used to assess 554 
precipitation at this stage, it can be used to quantify the added value of any variable provided 555 
reliable high-resolution observation data-sets are available.   556 
 557 
 558 
 559 
 560 
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Appendix 778 
 779 
The method described in Section 2 is based on the difference between two PDFs, therefore 780 
the selection of the PDF bin-size is a very important process. Since a smaller bin-size is 781 
analogous to a higher horizontal resolution, it should allow a better representation of the details 782 
of the PDF. However, the effect of varying the bin-size on this new added value method 783 
requires some testing.  784 
 785 
One example simulation for all RCMs used in this study (each driven by a different GCM and 786 
compared to the EURO4M data-set) was used to assess the dependence of the added value 787 
on the bin-size (Figures A1 and A2). The results show a decrease in magnitude of the added 788 
value as the bin-size increases. This happens as a result of aggregating a larger number of 789 
events and thus smearing out the details of the distributions. The sign of the added value 790 
changes in some cases, but in these cases the magnitude of the added value is very low. As 791 
a result of this test, in order to obtain the best possible resolution of the PDFs and the most 792 
informative outcome from this new method, the bin-size of 1 mm/day is used. 793 
 794 
 795 
Supplementary Information 796 
 797 
The EURO-CORDEX added value analysis presented in this study was performed at 798 
resolutions of 0.11° and 1.00°. The ensemble means are based on results conducted on each 799 
RCM member (and their corresponding driving GCM); these results are presented in Figures 800 
S1 to S6. The variability of added value with percentile fraction, and the PDFs of ECO regions 801 
at low resolutions can be seen in Figures S7 and S8 respectively.  802 
 803 
The CORDEX-CORE added value ensemble mean of the complete precipitation PDFs is 804 
shown in Figure S9, while the percentile fraction analysis of the added value for each 805 
observation source is displayed in Figures S10 to S13. 806 
 807 



 

1 

 

Fig. 1. An illustrative plot of the precipitation distribution of a single grid point. The lines 
describe the distribution of a hypothetical model and an observation data-set. The shaded 
area represents the Sum of the Relative Probability Difference between the model and 
observations (DM). 

 
 
 

all figures with captions
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Fig. 2. Relative probability difference (D) for the GCM (left) and RCM (mid) ensemble, and 
added value (Ai) for the RCM ensemble (right) compared to ECO at 0.11° (top) and 1.00° 
(mid-top) and EOBS at 0.11° (mid-bottom) and 1.00° (bottom).  
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Fig. 3. The variability of spatial mean added value index at different percentile intervals 
compared to ECO (top) and EOBS (bottom) at 0.11°. The EOBS data in this figure has 
been masked to match the locations of ECO. Each point x describes the added value of 
the percentile fraction ‘0-x’ (left), and ‘x-100’ (right). The shaded area shows the standard 
deviation of the data. 
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Fig. 4. PDFs of the RCM and GCM ensemble member data compared to all 9 regional 
observations at 0.11°. Each PDF includes a marker for the 75th, 95th, 99th and 99.9th 
percentiles. 
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Fig. 5. Added value for RCM ensemble-mean at different percentile intervals compared to 
ECO at 0.11°. 
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Fig. 6. Added value for RCM ensemble mean at different percentile intervals compared to 
EOBS at 0.11°. 
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Fig. 7. Added value for 99-100 percentile fraction of the EUR-11 ensemble members 
compared to the ECO at a resolution of 0.11°.  
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Fig. 8. Added value (top) and Climate Change Downscaling Signal (bottom) of the EURO-
CORDEX ensemble for the RCP 8.5 far future at different percentile intervals and at a 
resolution of 0.11°. 
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Fig. 9. Added value for the 99-100 percentile fraction of precipitation for the CORDEX-
CORE ensemble members compared to CHIRPS, CPC, GCO (Regionals), and TRMM, at 
0.22°. The Europe data used is the added value compared to the ECO as in Figure 2. 
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Fig. 10. RCM ensemble means of the CORDEX-CORE at 99-100 percentile intervals at 
0.22°. (top) Added value compared to TRMM, and (bottom) climate change downscaling 
signal for the RCP 8.5 far future. 
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Figure A1. Added value for some model examples at different PDF (with full distribution) 
bin sizes compared to EURO4M at 0.11° 



 

12 

 
 
 

 

Figure A2. Added value of 99-100 percentile interval for some model examples at different 
PDF bin sizes compared to EURO4M at 0.11°. 
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Fig. S1. Relative probability difference for each driving GCM ensemble member compared 
to ECO at a resolution of 0.11°. 
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Fig. S2. Relative probability difference for each RCM ensemble member compared to ECO 
at a resolution of 0.11°. 
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Fig. S3: Added value for each RCM ensemble member compared to ECO at a resolution 
of 0.11°. 
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Fig. S4. Relative probability difference for each driving GCM ensemble member compared 
to EOBS at a resolution of 0.11°. 
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Fig. S5. Relative probability difference for each RCM ensemble member compared to 
EOBS at a resolution of 0.11°. 
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Fig. S6: Added value for each RCM ensemble member compared to EOBS at a resolution 
of 0.11°.  
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Fig. S7. The variability of spatial mean added value index at different percentile intervals 
compared to ECO (top) and EOBS (bottom) at 1.00°. The EOBS data in this figure has 
been masked to match the locations of ECO. Each point x describes the added value of 
the percentile fraction ‘0-x’ (left) and ‘x-100’ (right). The shaded area shows the standard 
deviation of the data. 
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Fig. S8. PDFs of the RCM and GCM ensemble member data compared to all 9 regional 
observations at 1.00°. Each PDF includes a marker for the 75th, 95th, 99th and 99.9th 
percentiles. 
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Fig. S9. Added value for precipitation of the CORDEX-CORE ensemble members 
compared to CHIRPS, CPC, GCO, and TRMM at 0.22°. The Europe data used is the 
added value compared to ECO as in Figure 2.  
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Fig. S10. Added value for RCM ensemble means of the CORDEX-CORE at different 
percentile intervals compared to CHIRPS at 0.22°. The Europe data used is as Figure 5. 
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Fig. S11. Added value for RCM ensemble means of the CORDEX-CORE at different 
percentile intervals compared to CPC at 0.22°. The Europe data used is as Figure 5. 
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Fig. S12. Added value for RCM ensemble means of the CORDEX-CORE at different 
percentile intervals compared to GCO at 0.22°. The Europe data used is as Figure 5. 
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Fig. S13. Added value for RCM ensemble means of the CORDEX-CORE at different 
percentile intervals compared to TRMM at 0.22°. The Europe data used is as Figure 5. 
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Table 1. EURO-CORDEX RCM ensemble members and their corresponding driving GCMs 
(with variant label) used for this analysis.  

 

Driving CMIP5 GCM Variant RCM 

CCCma-CanESM2 r1i1p1 CLMcom-CCLM4-8-17 

CCCma-CanESM2 r1i1p1 GERICS-REMO2015 

CNRM-CERFACS-CNRM-CM5 r1i1p1 CLMcom-CCLM4-8-17 

CNRM-CERFACS-CNRM-CM5 r1i1p1 SMHI-RCA4 

CNRM-CERFACS-CNRM-CM5 r1i1p1 CNRM-ALADIN53 

CNRM-CERFACS-CNRM-CM5 r1i1p1 CNRM-ALADIN63 

CNRM-CERFACS-CNRM-CM5 r1i1p1 KNMI-RACMO22E 

CNRM-CERFACS-CNRM-CM5 r1i1p1 GERICS-REMO2015 

CNRM-CERFACS-CNRM-CM5 r1i1p1 DMI-HIRHAM5 

CNRM-CERFACS-CNRM-CM5 r1i1p1 IPSL-WRF381P 

ICHEC-EC-EARTH r12i1p1 CLMcom-CCLM4-8-17 

ICHEC-EC-EARTH r12i1p1 CLMcom-ETH-COSMO-crCLIM-v1-1 

ICHEC-EC-EARTH r12i1p1 DMI-HIRHAM5 

ICHEC-EC-EARTH r12i1p1 KNMI-RACMO22E 

ICHEC-EC-EARTH r12i1p1 GERICS-REMO2015 

ICHEC-EC-EARTH r12i1p1 UHOH-WRF361H 

ICHEC-EC-EARTH r1i1p1 DMI-HIRHAM5 

ICHEC-EC-EARTH r1i1p1 KNMI-RACMO22E 

ICHEC-EC-EARTH r3i1p1 DMI-HIRHAM5 

ICHEC-EC-EARTH r3i1p1 KNMI-RACMO22E 

ICHEC-EC-EARTH r1i1p1 SMHI-RCA4 

ICHEC-EC-EARTH r12i1p1 SMHI-RCA4 

ICHEC-EC-EARTH r3i1p1 SMHI-RCA4 

MOHC-HadGEM2-ES r1i1p1 CLMcom-CCLM4-8-17 

MOHC-HadGEM2-ES r1i1p1 DMI-HIRHAM5 

MOHC-HadGEM2-ES r1i1p1 KNMI-RACMO22E 

MOHC-HadGEM2-ES r1i1p1 SMHI-RCA4 

MOHC-HadGEM2-ES r1i1p1 GERICS-REMO2015 

all tables with captions
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MOHC-HadGEM2-ES r1i1p1 ICTP-RegCM4-6 

MOHC-HadGEM2-ES r1i1p1 UHOH-WRF361H 

MOHC-HadGEM2-ES r1i1p1 IPSL-WRF381P 

MOHC-HadGEM2-ES r1i1p1 CNRM-ALADIN63 

IPSL-IPSL-CM5A-MR r1i1p1 SMHI-RCA4 

IPSL-IPSL-CM5A-MR r1i1p1 IPSL-WRF381P 

IPSL-IPSL-CM5A-MR r1i1p1 KNMI-RACMO22E 

MIROC-MIROC5 r1i1p1 CLMcom-CCLM4-8-17 

MIROC-MIROC5 r1i1p1 GERICS-REMO2015 

MPI-M-MPI-ESM-LR r1i1p1 CLMcom-CCLM4-8-17 

MPI-M-MPI-ESM-LR r1i1p1 KNMI-RACMO22E 

MPI-M-MPI-ESM-LR r1i1p1 SMHI-RCA4 

MPI-M-MPI-ESM-LR r1i1p1 MPI-CSC-REMO2009 

MPI-M-MPI-ESM-LR r1i1p1 ICTP-RegCM4-6 

MPI-M-MPI-ESM-LR r1i1p1 UHOH-WRF361H 

MPI-M-MPI-ESM-LR r1i1p1 CLMcom-ETH-COSMO-crCLIM-v1-1 

MPI-M-MPI-ESM-LR r2i1p1 MPI-CSC-REMO2009 

MPI-M-MPI-ESM-LR r2i1p1 CLMcom-ETH-COSMO-crCLIM-v1-1 

MPI-M-MPI-ESM-LR r3i1p1 SMHI-RCA4 

MPI-M-MPI-ESM-LR r3i1p1 GERICS-REMO2015 

MPI-M-MPI-ESM-LR r3i1p1 CLMcom-ETH-COSMO-crCLIM-v1-1 

NCC-NorESM1-M r1i1p1 DMI-HIRHAM5 

NCC-NorESM1-M r1i1p1 KNMI-RACMO22E 

NCC-NorESM1-M r1i1p1 GERICS-REMO2015 

NCC-NorESM1-M r1i1p1 SMHI-RCA4 

NCC-NorESM1-M r1i1p1 IPSL-WRF381P 

NCC-NorESM1-M r1i1p1 CLMcom-ETH-COSMO-crCLIM-v1-1 
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Table 2. CORDEX-CORE RCM ensemble members for each domain (excluding Europe) 
and their corresponding driving GCMs used for this analysis. The 55 EURO-CORDEX 
model ensemble described in Table 1 was included with these domains.  

 
Domains RCMs Driving GCMs 

AFR-22 RegCM4 NorESM1-M MPI-ESM-MR HadGEM2-ES 

 REMO2015 NorESM1-M MPI-ESM-LR HadGEM2-ES  

NAM-22 RegCM4 GFDL-ESM2M  MPI-ESM-LR  HadGEM2-ES 

 REMO2015 NorESM1-M MPI-ESM-LR HadGEM2-ES 

CAM-22 RegCM4 GFDL-ESM2M MPI-ESM-MR HadGEM2-ES 

 REMO2015 NorESM1-M  MPI-ESM-LR  HadGEM2-ES  

SAM-22 RegCM4 NorESM1-M  MPI-ESM-MR  HadGEM2-ES  

 REMO2015 NorESM1-M MPI-ESM-LR  HadGEM2-ES  

EAS-22 RegCM4 NorESM1-M MPI-ESM-MR  HadGEM2-ES  

 REMO2015 NorESM1-M MPI-ESM-LR  HadGEM2-ES  

SEA-22 RegCM4 NorESM1-M MPI-ESM-MR  HadGEM2-ES  

 REMO2015 NorESM1-M MPI-ESM-LR  HadGEM2-ES  

WAS-22 RegCM4 NorESM1-M MPI-ESM-MR  MIROC5  

 REMO2015 NorESM1-M  MPI-ESM-LR  HadGEM2-ES  

AUS-22 RegCM4 NorESM1-M  MPI-ESM-MR  HadGEM2-ES  

 REMO2015 NorESM1-M  MPI-ESM-LR  HadGEM2-ES  
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Table 3. Observation datasets used to assess the added value of the EURO-CORDEX 
ensemble. 

 
Region Source Resolution Period used Reference 

Europe EOBS v20e 0.10° 1995-2014 Haylock et al. (2008) 

Alps EURO4M 5 km 1995-2008 Isotta et al. (2014) 

Spain Spain02 0.11° 1995-2010 Herrera et al. (2015) 

France SAFRAN 8 km 1995-2013 Vidal et al. (2010) 

UK ENG REG 0.11° 1995-2010 Perry et al. (2009) 

Norway KLIMAGRID 1 km 1995-2008 Mohr (2009) 

Sweden PTHBV 4 km 1995-2011 Johansson (2002) 

Carpathians CARPATCLIM 0.10° 1995-2010 Szalai et al. (2013) 

Germany REGNIE 1 km 1995-2014 Rauthe et al. (2013) 

Italy GRIPHO 12 km 2001-2014 Fantini (2019) 
 

 

Table 4. Observation datasets used to assess the added value of the CORDEX-CORE 
ensemble. 

 
Domain Source Res. Period used Reference 

Global CPC 0.50° 1995-2014 Chen et al. (2008) 

Global CHIRPS 0.05° 1995-2014 Funk & Hoell (2015) 

Global TRMM 0.25° 1998-2009 Kummerow et al.  (1998)  

NAM, CAM GCOSGHCN 2551 st 1995-2005 Menne et al. (2012) 

WAS IMD 0.25° 1995-2014 Pai et al. (2014) 

WAS, EAS, SEA APHRODITE 0.25° 1995-2007 Yatagai et al. (2009) 
 

 

 
 




