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rotation. Later studies focused on the effect of rotation on flow pattern formation [e.g., [6–11]] and
heat flux scaling laws [e.g., [11–15]], with a review by Stevens et al. [16].

Despite this large body of work devoted to rotating convection, little attention has been given
to further elucidating the physical mechanisms of the stabilizing effect of rotation. The most
commonly cited physical explanation for the stabilization is a single paragraph in Chandrasekhar
[2]. This, however, offers only a qualitative description of the special case of a linearly stratified,
vertically bounded, viscous layer of rotating fluid. Such a setup is not generally present in the case
of a convective boundary layer (either double diffusive or purely thermal), where a relatively thin
gravitationally unstable stratification is bounded on one side with a large expanse of homogeneous
fluid in the adjacent mixed layer [e.g., [15,17]].

Here we examine the physical mechanisms responsible for the stabilization of convection by
planetary rotation in an idealized model of a convective boundary layer. Our goal is to construct a
quantitative analysis of different physical mechanisms that are operating, rather than to present new
linear stability results. The focus is on gaining physical insight into the stabilization of convection
by rotation. Specifically, by approximating the boundary layer as an infinitely thin interface with a
finite change in buoyancy across it, we are able to provide analytical insight to the instability physics
that is also qualitatively similar to the full stability analysis (requiring a numerical solution) that was
found to accurately describe the heat flux dependence on rotation from a double diffusive interface
[1]. It is also a similar configuration to the laboratory study of Baldwin et al. [18], where two
homogeneous layers of constant buoyancy are separated by a sharp convectively unstable interface
and subjected to varying levels of rotation. We start with the simplest setups, adding levels of
complexity stepwise, to see how each added feature (rotation, viscosity, a semibounded domain)
of the setup affects the stability and the physical mechanisms involved.

To aid in our physical interpretation, we borrow heavily from the wave interaction theory (WIT)
that is often used to provide a physical mechanism for various features of shear flow instabilities
[e.g., [19,20]] such as the presence of different instability types [21–23], optimal transient growth
[24], the general stability conditions [25], and the structure of the eigenvalue spectrum [26]. This
technique generally uses the vorticity field and its relation to the vertical velocity and interface
displacement fields in order to construct a visual, and mathematical, description of the relevant
interacting interfacial waves. Strict application of WIT requires that the flow be described by distinct
interfaces, and allows for a quantification of the influence of various mechanisms on the stability of
the convection so that the most important effects can be isolated. As we will show, this leads to a
different description of the physical mechanisms by which rotation stabilizes convection, and their
dependence on various parameters.

The paper is organized as follows. In the following section, we outline the general linear stability
problem and the simplifications that arise when a two-layer setup is adopted, as well as a brief
introduction to the wave interaction theory. In Sec. III, a number of simple setups are examined
when the flow is taken as inviscid. The essential physical mechanisms are described for the simplest
case of nonrotating, inviscid convection and its alteration by rotation and by a bounded domain. In
Sec. IV, we look at the viscous case, demonstrating that the inviscid mechanisms identified in the
previous section carry over. A summary and conclusions are presented in the final section.

II. LINEAR STABILITY ANALYSIS

A. Derivation

A general derivation of the linearized equations, and the linear stability problem, is first derived
for the full viscous, rotating, two-layer setup (see Fig. 1 for a visual guide). The basic equilibrium,
or background, state consists of a motionless hydrostatic balance with a vertical buoyancy profile
specified by B(z). We will neglect diffusion of the buoyancy scalar field throughout, compatible
with our two-layer model. This approximation is valid in the case of immiscible fluids (wherein a
neglected surface tension between the layers may arise), as well as in the limit of large Prandtl
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taken to give

ζt − f wz = ν∇2ζ . (7)

These steps have reduced the equation set to three equations [(6), (7), and (5)] in the three variables
{w, ζ , b}.

In order to make analytical progress, we take all perturbation quantities to be represented by the
normal mode form, as in w(x, y, z, t ) = ŵ(z)eσ t+i(kx+	y) for the vertical velocity, with the real part
of this expression implicitly intended. We can then write our equation set as

(σ − νL)L(ŵ) = − f ζ̂ ′ − k̃2b̂, (8)

(σ − νL)ζ̂ = f ŵ′, (9)

σ b̂ = −Bzŵ, (10)

where we have defined the operator L ≡ d2/dz2 − k̃2, with k̃2 ≡ k2 + 	2 the squared amplitude
of the wave-number vector, �k = (k, 	). For all hatted normal mode variables, the primes denote
ordinary differentiation with respect to z. It is possible to eliminate b̂,

σ (σ − νL)L(ŵ) = −σ f ζ̂ ′ + k̃2Bzŵ, (11)

which can be combined with a differentiated (9) to give a single equation for ŵ of

σ (σ − νL)2L(ŵ) + σ f 2ŵ′′ = k̃2(σ − νL)(Bzŵ). (12)

In the following sections, we will consider solutions to this equation, and various simplifications
thereof. In addition, we will apply the boundary conditions

ŵ = 0 at z = +∞, zb (13)

in all variations of the setup. Two choices for the location of the lower boundary will be exam-
ined, zb ∈ {−∞,−H}, corresponding to infinite and semi-infinite (bounded from below) domains,
respectively.

B. Two-layer formulation

We simplify (12) immediately by substituting in our two-layer background the buoyancy profile
with Bz = −|
B|δ(z), where δ(z) is the Dirac delta function, and 
B < 0 the buoyancy difference
across the layers for a convectively unstable profile. This splits the problem up into one for the
layers (i.e., where z �= 0) and one for the interface (at z = 0) since in the layers we have eliminated
the right-hand side of (12), so

(σ − νL)2L(ŵ) + f 2ŵ′′ = 0. (14)

At the interface, the δ function singularity on the right-hand side of (12) requires that we integrate
across the interface and apply a series of “jump” conditions on the solution across it [see, e.g., [20]].
These correspond to the following physical principles, with the interfacial jump denoted [[X ]]0 ≡
X (0+) − X (0−):

(i) Continuity in vertical velocity: [[ŵ]]0 = 0.
(ii) Continuity in vertical stress, which can be expressed as [[π̂ ]]0 = 0. However, in practice, this

condition is not explicitly used. Instead, we integrate (12) across the interface in each case. The
Appendix describes the equivalence of these two approaches.

(iii) Continuity in horizontal velocity (for viscous flows): [[û]]0 = 0 and [[v̂]]0 = 0 implies
[[ŵ′]]0 = 0.

(iv) Continuity in horizontal stress (for viscous flows, see [28]): [[û′ + ikŵ]]0 = 0 and [[v̂′ +
i	ŵ]]0 = 0 implies [[ŵ′′]]0 = 0.
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(v) Continuity of vertical vorticity (for viscous, rotating flows): [[ζ̂ ]]0 = 0. In practice, this
condition (and the following one) is used in combination with (9) relating ŵ to ζ̂ .

(vi) Continuity of the vertical derivative of vertical vorticity (for viscous, rotating flows):
[[ζ̂ ′]]0 = 0.

C. Application of wave interaction theory

To understand the physical mechanism, we will adopt a WIT-type approach, by formulating
the interaction between the horizontal vorticity, vertical velocity, and vertical displacement of the
buoyancy interface. In past studies, this approach has been used to quantify the interactions between
interfaces that support stable wave motions, such as gravitationally stable buoyancy interfaces
(supporting internal gravity waves) and vorticity interfaces (supporting interfacial Rossby/vorticity
waves) [20,21,25]. Each wave has a vertical velocity field that can affect the growth and propagation
of the other wave; thus, when conditions are right, they are able to cause each other to propagate
in phase and experience mutual growth. Despite the setup considered herein, namely, that of a
single (gravitationally unstable) buoyancy interface, the techniques of WIT are used to quantify
how the interface interacts with itself and other sources of vertical velocity (e.g., the presence of
a boundary). Describing this self-interaction consists of quantifying the interplay of the vertical
velocity, interfacial vorticity, and vertical displacement fields, their relationship to each other, and
their relative orientations responsible for instability growth. Note that this self-interaction has also
been discussed in the context of stratified shear layer instabilities [23].

For an infinitely thin interface in an inviscid flow, it is not the vorticity, but rather the vortex
sheet strength that is relevant. The sheet strength is defined as the integrated horizontal vorticity
perturbation across the interface, i.e.,

�γ ≡
∫ 0+

0−
�qH dz ⇒ �̂γ = (−[[v̂]]0, [[û]]0, 0).

Here we use �qH ≡ (wy − vz, uz − wx, 0), and the last expression is the normal mode form of the
sheet strength. However, we will often refer to �γ as the “interfacial vorticity” since it is less
cumbersome than the “interfacial vortex sheet strength.”

Using the horizontal momentum equations in (1)–(3), we can derive a modal interfacial vorticity
equation, namely,

σ �̂γ = f �̂γ⊥ + i|
B|η̂�k⊥. (15)

Here we have denoted the vertical displacement of the interface as η, and used the normal mode form
of the relation, b = −Bzη, given by b̂ = |
B|δ(z)η̂. In addition, we have defined the perpendicular
vector to �X = (X1, X2) as �X⊥ ≡ (X2,−X1), and have neglected the viscous term since viscosity
eliminates the vortex sheet at the interface. The physical meaning of the various terms in this
equation will be discussed throughout the text below.

The last mathematical tool that we will need in our physical interpretation is to understand the
effect that the interfacial vorticity distribution has on the vertical velocity. Once this is known, we
can directly assess the changes in interface displacement through the linearised kinematic condition,

Dη

Dt
= w ⇒ σ η̂ = ŵ(0). (16)

The relationship between the interfacial vorticity and the vertical velocity at the interface must be
found in each particular setup considered, as is outlined below.
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To understand the effect that this interfacial vorticity distribution has on the growth of the
interface displacement [through the kinematic condition in (16)], we quantify the connection to
the vertical velocity at the interface, ŵ(0). This can be done by using the definition of �̂γ and its
component in the �k⊥ direction, to give

�̂γ · �k⊥ = −i[[ŵ′]]0. (20)

Substituting from the solution for ŵ, this produces the result that i �̂γ · �k⊥ = −2k̃ŵ(0), which allows
us to solve for the vertical velocity at the interface,

ŵ(0) = − i

2
�̂γ · �e(k)

⊥ , (21)

where �e(k)
⊥ denotes the unit vector in the �k⊥ direction. This is an important result that shows it is the

component of the interfacial vorticity that is perpendicular to �k that is responsible for generating
vertical velocity at the interface. If, for whatever reason, the interfacial vorticity were oriented
entirely along �e(k), then no vertical velocity would be produced. However, in the present case, �̂γ
is oriented in the optimal configuration along �e(k)

⊥ . This can be verified by taking the dot product of
(19) with �k. Also note that the dispersion relation can be recovered by taking the dot product of (19)
with �k⊥, multiplying by σ , and substituting both the kinematic condition and (21).

In summary, we can construct the following chain of events to understand the growth of the
interface displacement (and other fields), with reference to Fig. 2. A small perturbation of the
interface with wave-number vector �k will generate interfacial baroclinic vorticity that is maximum at
the nodes of the displacement, and in the direction of �k⊥. In this optimum orientation, the interfacial
vorticity produces a vertical velocity that is in phase with the interface displacement, and thus the
displacement grows, creating a positive feedback between displacement, interfacial vorticity, and
vertical velocity. Although this physical explanation is considerably more indirect than the much
more common “heavy fluid tends to fall and lighter fluid tends to rise” approach, it will be helpful
in subsequent sections when quantifying the effects of rotation and boundaries. A similar physical
explanation has been described previously by Roberts and Jacobs [33].

B. Inviscid, unbounded, rotating convective instability

By now adding rotation while maintaining an inviscid, unbounded setup, we seek solutions for
(14) with ν = 0, i.e.,

σ 2L(ŵ) + f 2ŵ′′ = 0. (22)

These take the form of ŵ(z) ∝ erz, leading to a characteristic equation for the inverse length scale,
r, with solutions of

r = ± σ

(σ 2 + f 2)1/2
k̃.

By defining the dimensionless growth rate as σ∗ ≡ σ/ f , this can be written as

r = ± σ∗
(σ 2∗ + 1)1/2

k̃.

We now choose the correct sign of r to satisfy the boundary conditions that w should vanish as
|z| → ∞ to give ŵ(z) = Ae−r|z|, with r taken positive from now on. Note that there are two regimes
of r: (i) r ∼ σ∗k̃ for σ∗ � 1 so that for conditions where rotation dominates the growth rate (i.e.,
small σ∗), we recover “Taylor column”-like behavior, where the vertical velocity extends far beyond
the interface level, and (ii) r ∼ k̃ for σ∗ � 1 to give the standard exponential decay with a wave
number that is present in the nonrotating case.
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The increase in vertical velocity at the interface arising from vortex tilting in the layers can be
quantified using (20) and, substituting the solution for the rotating case,

�̂γ ·�k⊥ = 2irŵ(0) ⇒ ŵ(0) = − i

2
�̂γ ·�e (k)

⊥ (1 + σ−2
∗ )1/2. (27)

Thus, by comparing to (21), we see that the vertical velocity at the interface is increased by the factor
(1 + σ−2

∗ )1/2 above the nonrotating case. Acting alone, rotation would then lead to an increase in
growth rate above the nonrotating case, which is not found. The reason is due to the action of the
interfacial vorticity, which we now describe.

Interface mechanism. From inspection of the interfacial vorticity equation (15), we can see that
vorticity is produced by the baroclinic term in the direction of �k⊥, while the effect of rotation (in the
term f �̂γ⊥) is to rotate the vorticity vector away from this direction. The angle θ that �̂γ makes with
the direction of the baroclinic source term along �k⊥ can be found through taking · �e (k) of (15). We
find that �̂γ is perpendicular to σ �e (k) + f �e (k)

⊥ , and the angle that it departs from �k⊥ is

θ = tan−1(σ−1
∗ ),

as sketched in Fig. 4(e). This shows that for conditions where rotation is dominating the growth rate,
σ∗ � 1 and θ → π/2 so that �̂γ is aligned with �k. Therefore, rotation shifts �̂γ to a position where it
generates a reduced vertical velocity at the interface level, via (27). On the other hand, as we saw in
the nonrotating case, when buoyancy-driven growth dominates rotation, σ∗ � 1, θ → 0, and �̂γ is
closely aligned with the baroclinic forcing direction, along �k⊥. The source of this rotationally driven
misalignment of �̂γ from the baroclinic forcing direction of �k⊥ can be seen to arise from the vortex
tilting process that is occurring at the interface [Fig. 4(f)]. This comes directly from the definition
of �̂γ⊥ ≡ ([[û]]0, [[v̂]]0, 0), so that the term f �̂γ⊥ describes the tilting of planetary vorticity integrated
across the interface.

The final reduction in growth rates from the effects of rotation can be seen by comparing the
relative magnitudes of the layer- and interface-based vorticity mechanisms described above. This
can be done by writing the interfacial vorticity equation (15) into components that are in the basis
{�e (k), �e (k)

⊥ }, and substituting the �e (k) equation into that for �e (k)
⊥ , giving

(1 + σ−2
∗ )σ 2 �̂γ ·�k⊥ = i|
B|k̃ŵ(0).

We can then compare this directly to the nonrotating counterpart, found by multiplying (19) by σ

and using the kinematic condition σ η̂ = ŵ(0), to give

σ 2 �̂γ ·�k⊥ = i|
B|k̃ŵ(0).

Thus, the misalignment in the interfacial vorticity equation due to rotation causes a factor 1 + σ−2
∗

reduction in the effective vorticity (in the �e (k)
⊥ direction), which can be directly compared to an

increase in vertical velocity due to the layer-based mechanism by the factor (1 + σ−2
∗ )1/2. Overall

growth rates are therefore reduced by rotation effects, as seen in Fig. 3(a).
We also provide a heuristic interpretation of this interface mechanism that does not appeal to the

methods of wave interaction theory in the Appendix.

C. Inviscid, bounded, rotating convective instability

By placing a solid boundary a distance H , below the interface, it is possible to introduce an
explicit length scale into the problem. This is an idealization to a convective boundary layer in which
both a solid boundary condition and length scale are present. A solution for ŵ(z) can immediately
be written, once it is recognized that the boundary condition of ŵ(−H ) = 0 can be satisfied by
using the method of images [34]. An identical interface is placed equidistant from the boundary
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with opposite strength, i.e., the solution takes the form

ŵ(z) = A(e−r|z| − e−r|z+2H |) for z � −H.

The resulting dispersion relation is found through the jump condition in (23), which is altered only
in the value of the vertical velocity at the interface level, ŵ(0), giving

σ∗(σ 2
∗ + 1)1/2F (σ∗, k∗, H∗) − k∗ = 0. (28)

Here we have defined the dimensionless distance to the boundary as H∗ ≡ H/LR, and the function

F (σ∗, k∗, H∗) ≡ 1

2

{
1 + coth

[
k∗H∗

σ∗
(σ 2∗ + 1)1/2

]}
.

It is worth comparing (28) with the dispersion relation found above in (24) without a boundary.
They differ only in how F differs from unity. Since coth(x) → 1 as x → ∞, we recover the
unbounded case when H∗ becomes large (with the other variables held fixed). The results are plotted
as a series of curves for different values of H∗, shown in Fig. 3(b). The presence of a boundary
provides a complete stabilization of the lowest wave numbers, but otherwise does not alter the
growth rates away from the low-k∗ cutoff. For fixed values of f and |
B| (and therefore LR), as the
boundary is moved closer to the interface, shorter and shorter wavelengths are stabilized. This can
be seen in Fig. 3(b) as the relatively sharp cutoff in growth rate shifts to larger k∗ as H∗ decreases.

It may appear that the rotational regime can be completely eliminated by a boundary that is
sufficiently close. In this scenario, the lowest wave numbers are stabilized before a transition to the
rotational scaling regime is reached. However, the location of the cutoff wave number can be found
by taking the limit σ∗ → 0+ of the dispersion relation, and solving to give kc

∗ = (2H∗)−1/2. Note
that this limit is not independent of rotation, and the rotational regime (i.e., σ∗ < 1) must be crossed
to reach stabilization due to the boundary. This can be compared to the nonrotating, bounded case,
where there is an exponential decrease in the growth rate with σ∗ = k1/2

∗ (1 − e−2k∗H∗ )1/2 versus the
unbounded result of σ∗ = k1/2

∗ from (18).

Physical mechanism

The stabilization of the convective instability by the proximity of the boundary has a simple
physical explanation. As was apparent from the mathematical analysis, the presence of the boundary
altered the vertical velocities with the inclusion of the image source. This image has the effect of
reducing vertical velocities at the interface level, which in turn reduces the growth of the instability
directly through the kinematic condition, σ η̂ = ŵ(0). Therefore, for a given interface displacement
(η̂), there will be a lower growth rate (σ ) associated with the reduced vertical velocity at the
interface. In addition, as the boundary is moved closer to the interface, so too is the image source,
thus resulting in a stronger stabilization due to the monotonically increasing vertical velocities with
distance to the source. This effect will be more pronounced with increasing rotation rates (decreasing
σ∗) due to the reduced vertical decay of ŵ.

We note that the mechanism identified in the previous section, consisting of horizontal vorticity
production in the layers through tilting, and its reinforcing of the vertical velocity field, leads to
the reduced vertical decay of ŵ(z) from the interface. It may be interpreted as the mechanism for
the formation of a flow with vertical “rigidity,” which in the strongly rotating limit gives rise to a
Taylor-column (TC) structure with vanishing ŵ′(z). Although we showed that this mechanism will
lead to increased ŵ at the interface in the case of an unbounded flow, this is not necessarily the
case in a bounded flow since ŵ must vanish at the boundary. The influence that each of these two
processes has on the convection can be quantified by solving for ŵ(0), as done previously:

ŵ(0) = − i

2
�̂γ ·�e(k)

⊥ (1 + σ−2
∗ )1/2

{
1 − exp

[
− 2k̃H

σ∗
(σ 2∗ + 1)1/2

]}
.
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IV. THE EFFECTS OF VISCOSITY

In this section, we now include the viscous terms in the mixed layer differential equation (14),
while considering only unbounded domains. This is a sixth-order ordinary differential eigenvalue
problem for {σ, ŵ(z)}, and we can take eigenfunction solutions of the form ŵ(z) ∝ erz, resulting in
a characteristic equation for R ≡ r2 that is cubic with

a3R3 + a2R2 + a1R + a0 = 0, (30)

and coefficients given by

a3 = ν2, (31)

a2 = −(2σν + 3ν2k̃2), (32)

a1 = σ 2 + 4σνk̃2 + 3ν2k̃4 + f 2, (33)

a0 = −(σ 2k̃2 + 2σνk̃4 + ν2k̃6). (34)

It is helpful to nondimensionalize using the inverse timescale νk̃2, and defining R∗ ≡ R/k̃2 to give

a∗
3R3

∗ + a∗
2R2

∗ + a∗
1R∗ + a∗

0 = 0, (35)

with coefficients given by

a∗
3 = 1, (36)

a∗
2 = −(2σ∗ + 3), (37)

a∗
1 = σ 2

∗ + 4σ∗ + 3 + Ẽk
−2

, (38)

a∗
0 = −(σ 2

∗ + 2σ∗ + 1), (39)

after dividing by ν2k̃6. Here we have also defined σ∗ ≡ σ/(νk̃2) and a dimensionless number that
has a similar form to an Ekman number, Ẽk ≡ (νk̃2)/ f . Note that this definition of the dimensionless
growth rate, σ∗, differs from that used in the previous section for inviscid flows.

A. Viscous, nonrotating convective instability

The roots of the characteristic equation can easily be found for the nonrotating case with Ẽk =
∞. These are R∗ = 1 and the double root R∗ = σ∗ + 1. However, through inspection of (11), with
the right-hand side equal to zero, we see that one of the two σ∗ + 1 roots is spurious and this results
in r = ±k̃, ±√

σ∗ + 1k̃, with ŵ(z) ∝ erz forming a general solution. Most of these solutions can be
eliminated based on the boundary conditions that ŵ → 0 as |z| → ∞, so the solution is

ŵ(z) =
{

A1e−k̃z + A2e−(σ∗+1)1/2 k̃z, z > 0

B1ek̃z + B2e(σ∗+1)1/2 k̃z, z < 0.
(40)

We now can solve for the four unknown coefficients using the four jump conditions. The
condition for the continuity of vertical stress is equivalent to integrating (11) across the interface,
and gives

σν[[ŵ′′′]]0 − k̃2|
B|ŵ(0) = 0. (41)

It is useful to work with the dimensionless form of this jump condition,

σ∗
[[ŵ′′′]]0

k̃3ŵ(0)
= R̃a,

where we have defined a Rayleigh-number-like quantity, R̃a ≡ |
B|/(ν2k̃3).
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V. SUMMARY AND CONCLUSIONS

Stimulated by the close agreement between linear stability results and nonlinear convective heat
transports [1], in this paper, we have taken a different look at quantifying the physical mechanisms
involved in the linear stabilization of convection by rotation. We do this using an idealized two-
layer setup where we add increasing complexity stepwise, i.e., rotation, a semibounded domain,
and viscosity. This setup has the advantage of allowing for the quantification of different effects on
the growth of the instability using wave interaction theory from the stability of stratified shear flows
[25].

Application of this methodology to the inviscid, unbounded, rotating convection problem quan-
tifies two principal effects that contribute to altering the growth rates of convection by rotation:
(i) a source of planetary vorticity in the mixed layers that can contribute to an increase in growth,
that is (ii) more than compensated by decreasing growth due to a misalignment of the interfacial
vorticity with the interface displacement caused by the tilting of planetary vorticity by interfacial
shear. The effect in (i) is related to the development of Taylor columns (TCs) in the layers, and is
altered when one of the layers is bounded in the vertical. In this bounded case, the need to satisfy
the rigid lid boundary condition causes an additional stabilization, and an approximate condition
of � ≡ |
B|/(2 f 2H ) > 2 was developed to determine whether this TC mechanism was acting to
stabilize convection. Finally, by including viscosity in the problem, we find, unsurprisingly, that
the high wave numbers are stabilized, giving rise to a wave number of maximum growth, k̃max.
However, the mechanisms of stabilization by rotation, and rotational effects on k̃max, are essentially
set by the inviscid mechanisms (i), (ii) discussed above, with viscosity only serving to limit high
wave-number growth.

We can therefore summarize the central general result of this study: assessing the physical
mechanisms responsible for the linear stabilization of convection by rotation is not straightforward,
can be of various types, and depends on the parameters of the problem. For more realistic cases
with continuous buoyancy profiles with boundary and mixed layers, the simple setup of a linearly
stratified and vertically bounded layer, as in the often-cited paper of Chadrasekhar [2], cannot be
used as an idealized guide for a full understanding of the stability mechanisms. A more careful ap-
proach is required that accounts for the physical mechanisms identified herein and their dependence
on parameters.
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APPENDIX A: DERIVATION OF THE CONTINUITY OF VERTICAL STRESS JUMP CONDITION

In this Appendix, we demonstrate that the jump conditions obtained by integrating equation (12)
across the singularity at the buoyancy interface are equivalent to requiring a continuous vertical
stress. In general, the vertical stress across a horizontal interface is given by −π + 2ν∂w/∂z and in
normal mode form by −π̂ + 2νŵ′. In both the inviscid and viscous cases, the second term vanishes
since either ν = 0 or [[ŵ′]]0 = 0, respectively. Therefore, the continuity of vertical stress across the
interface reduces to [[π̂ ]]0 = 0. We now use this condition to recover the jump conditions obtained
in the main body of the text by integrating (12) across the interface.
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The divergence of the momentum equations in (1)–(3) gives

L(π̂ ) = b̂′ − f ζ̂ , (A1)

which can be used to solve for the pressure by using the Green’s function, G(z, s), for the linear
operator L, via

π̂ (z) =
∫ ∞

−∞
G(z, s)F̂ (s) ds, (A2)

where G(z, s) = −e−k̃|z−s|/2k̃ for an unbounded domain, which has been assumed here. The right-
hand side of (A1) is represented by F̂ (z) and is composed of the vertical derivative of a singular
term with b̂ = −Bzη̂ and Bz = 
B δ(z). We only consider this singular buoyancy term in F̂ since it
appears in the jump condition. It is possible to solve for the pressure contribution of this term, which
we will denote with the i subscript due to its interfacial jump. It can be written using integration by
parts as

π̂i(z) = 
B
∫ ∞

−∞

∂G

∂s
δ(s)η̂(s) ds, (A3)

and results in

π̂i(z) = 
B η̂(0)

2
sgn(z)e−k̃|z|, (A4)

giving a jump in pressure across the interface of [[π̂i]]0 = 
B η̂(0).
In addition to this hydrostatic pressure jump across the interface, there is also a contribution from

the layers, which will be denoted with the 	 subscript. This can be found by taking the horizontal
divergence of (1),(2) to find π̂	 as a function of ŵ and ζ̂ , i.e.,

π̂	(z) = (−σ + νL)ŵ′ − f ζ̂

k̃2
. (A5)

Setting the total pressure jump across the interface to zero, i.e., [[π̂i]]0 + [[π̂	]]0 = 0, gives a general
jump condition of

σ [[(−σ + νL)ŵ′ − f ζ̂ ]]0 + k̃2
B ŵ(0) = 0, (A6)

where we have used the kinematic condition σ η̂(0) = ŵ(0) from (16). It is possible to use this jump
condition to recover all cases examined in the body of the text.

(i) Inviscid convection. Setting ν = 0 and using (9) to write ζ̂ = f ŵ′/σ recovers the jump
condition in (23) from (A6). This contains the inviscid, nonrotating jump condition as a special
case with f = 0.

(ii) Viscous convection. For this case, we use [[ŵ′]]0 = [[ζ̂ ]]0 = 0 and the fact that [[L(ŵ′)]]0 =
[[ŵ′′′]]0 to recover the jump condition (41) from (A6).

APPENDIX B: HEURISTIC INTERPRETATION

We have largely based our physical interpretations on the interplay of the vorticity, vertical
velocity, and displacement fields, using wave interaction theory. However, in this section, we offer
a heuristic physical interpretation of the interfacial stabilization mechanism that is not intended to
be as formal and quantitative. It describes the stabilization at the stratified interface that comes from
including rotation into the inviscid, unbounded setup.

With reference to the sketch in Fig. 8, we see that at an interface growing from a convective
instability that is free from rotation, there are overturning circulation cells that are formed [Fig. 8(a)].
These transport mixed layer fluid horizontally away from crests and towards troughs, and are
confined to the �e(k) direction. This can also be thought of as the signature of the alignment of
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the interfacial vorticity component �̂γ · �e(k)

⊥ . This quantity serves as a normalization that is needed when
comparing different cases (e.g., bounded and unbounded domains).

[36] S. Chandrasekhar, The character of the equilibrium of an incompressible heavy viscous fluid of variable
density, Math. Proc. Cambridge Philos. Soc. 51, 162 (1955).

[37] M. S. Davies Wykes and S. Dalziel, Efficient mixing in stratified flows: Experimental study of a Rayleigh-
Taylor unstable interface within an otherwise stable stratification, J. Fluid Mech. 756, 1027 (2014).

[38] R. Hide, The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid of variable
density II: Two special cases, Qtrly. J. Mech. Appl. Math. 9, 35 (1956).

083501-19


