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The well-known energy dissipation anomaly in the inviscid limit, related to velocity singularities
according to Onsager, still needs to be demonstrated by numerical experiments. The present
work contributes to this topic by high-resolution numerical simulations of the inviscid three-
dimensional Taylor–Green vortex problem using a novel high-order discontinuous Galerkin dis-
cretisation approach for the incompressible Euler equations. The main methodological ingredient15

is the use of a discretisation scheme with inbuilt dissipation mechanisms as opposed to discretely
energy-conserving schemes, which – by construction – rule out the occurrence of anomalous
dissipation. We investigate effective spatial resolution up to 81923 (defined based on the 2π-
periodic box) and make the interesting phenomenological observation that the kinetic energy
evolution does not tend towards exact energy conservation for increasing spatial resolution of20

the numerical scheme, but that the sequence of discrete solutions seemingly converges to a
solution with nonzero kinetic energy dissipation rate. By taking the fine-resolution simulation
as reference, we measure grid-convergence with a relative L2-error of 0.27% for the temporal
evolution of the kinetic energy and 3.52% for the kinetic energy dissipation rate against the
dissipative fine-resolution simulation. The present work raises the question whether such results25

can be seen as a numerical confirmation of the famous energy dissipation anomaly. Due to
the relation between anomalous energy dissipation and the occurrence of singularities for the
incompressible Euler equations according to Onsager’s conjecture, we elaborate on an indirect
approach for the identification of finite-time singularities that relies on energy arguments.

Key words: anomalous energy dissipation, finite-time singularities, incompressible Euler equa-30

tions, Onsager’s conjecture, turbulence

1. Motivation
Singularities play a key role in fluid mechanics (Eggers 2018). While singularities in the form

of shocks are well-understood for the compressible Euler equations and the inviscid Burgers
equation (Burgers 1948) as a simplified model, the occurrence of singularities that develop in35

finite time is discussed controversially for the three-dimensional incompressible Euler equations.

† Email address for correspondence: niklas.fehn@tum.de
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The occurrence of singularities is strongly related to anomalous dissipation of kinetic energy
in three-dimensional incompressible Euler flows according to the pioneering work by Onsager
(1949), which is well-documented in review articles (Eyink & Sreenivasan 2006; Eyink 2008)
and in the recent essay by Dubrulle (2019). Due to the relation between singularities and40

dissipation, we distinguish between (i) a direct approach to identify finite-time singularities
for incompressible Euler flows, e.g., by showing that the vorticity blows up in finite time through
different methods (e.g., an analysis of the kind ‖ω‖∞ ∼ (t∗ − t)−γ according to the Beale–Kato–
Majda theorem (Beale et al. 1984) trying to identify t∗ and γ from numerical results), and (ii) an
indirect approach providing indications of finite-time singularities by observing an “anomalous”45

dissipative behaviour in the kinetic energy evolution. While most approaches in the literature can
be identified as belonging to the first category, the present work focuses on a technique related
to the second category. As explained below, this indirect approach is rather new or unexplored
due to certain subtleties with respect to numerical discretisation schemes. To complement these
results, we additionally show numerical results related to the direct identification approach such50

as the temporal evolution of the maximum vorticity ‖ω‖∞ and the enstrophy E.

1.1. State-of-the-art and limitations in tracing finite-time singularities
A strategy to identify potential singularities directly are time series expansions (Brachet et al.

1983; Pelz &Gulak 1997; Taylor &Green 1937;Morf et al. 1980), but it was found that numerical
inaccuracies prevent a definite answer when using this technique. Numerical investigations by55

means of PDE (partial differential equation) solvers have therefore played the most dominant role
in the exploration of finite-time singularities as detailed below.
A difficulty in identifying singularities with the direct approach by numerical simulations is the

inherent conflict that arbitrarily small structures can not be resolvedwith a numerical simulation of
finite resolution, which renders this problem one of the most challenging topics in computational60

fluid dynamics. Much work has been done in this field. In the 1980s and 1990s, several early
works on direct numerical simulation (DNS) of both inviscid and high-Reynolds-number viscous
incompressible flows reported indications of finite-time singularities for the incompressible Euler
equations (Brachet et al. 1983; Kerr & Hussain 1989; Kerr 1993; Brachet et al. 1992; Boratav &
Pelz 1994). Symmetry in the initial conditions plays an important role as specifically mentioned65

and addressed by some works (Boratav & Pelz 1994; Pelz & Gulak 1997; Pelz 2001), raising
the question whether singularities are possible for problems that are not perfectly symmetric.
However, these works do not allow a definite answer to the question of finite-time singularities,
see also the review articles on this topic (Gibbon 2008; Hou & Li 2008). One of the main reasons
why the results of these studies have been inconclusive is that the spatial resolution has been70

limited due to the computational power and computational approaches available at the time.
Numerical results shown in Hou & Li (2008) suggest that dynamic depletion of vortex stretching
could be a mechanism that prevents a finite-time blow-up, but the same authors report evidence
for a finite-time singularity for a different flow configuration with solid boundaries in a later
work (Luo & Hou 2014).75

In terms of the flow configuration being studied, numerical investigations on finite-time
singularities can be categorised as follows: The Taylor–Green vortex (TGV) has been analyzed
in Brachet et al. (1983, 1992); Brachet (1991); Shu et al. (2005); Cichowlas & Brachet (2005);
Bustamante&Brachet (2012) and for a regularised problemconsidering theEuler–Voigt equations
in Larios et al. (2018), the high-symmetry Kida–Pelz initial condition in Hou & Li (2008);80

Cichowlas & Brachet (2005); Grafke et al. (2008), colliding Lamb dipoles in Orlandi et al.
(2012), and other perturbed cylindrical vortex tubes in Kerr & Hussain (1989); Kerr (1993);
Hou & Li (2008); Grauer et al. (1998); Kerr (2013). Most studies used spectral methods as
discretisation schemes.
For these direct numerical simulations, common approaches to trace singularities are moni-85
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toring the maximum vorticity ‖ω‖∞ over time, see the Beale–Kato–Majda theorem (Beale et al.
1984), and the “analyticity strip” method (see Sulem et al. 1983), which aims at capturing the
smallest scales of the flow. The width of the analyticity strip δ(t), obtained from fitting the
energy spectrum to E(k, t) = C(t)k−n(t) exp(−2kδ(t)), is monitored over time for successively
finer spatial resolutions up to a resolution for which extrapolations of δ(t) allow conclusions90

whether δ(t) reaches 0 in a finite time (finite-time singularity) or whether δ(t) decreases only
exponentially in time (regularity at all times).
Numerical results for the three-dimensional inviscid Taylor–Green vortex shown in Brachet

et al. (1983); Cichowlas & Brachet (2005) indicate only an exponential decay, but this might be
due to the limited spatial resolution and also due to the fact that only small times of the TGV flow95

have been considered, so that a finite-time singularity can not be excluded from these results. In
a later work by Bustamante & Brachet (2012), a change in regime indicating potentially faster
than exponential decay is reported and the results are “not inconsistent with the occurrence of a
singularity”, but again resolutions higher than the maximum one of 40963 would be required for
definite answers. In Cichowlas & Brachet (2005) it is estimated that conclusions regarding finite-100

time singularities using the analyticity strip method would require spatial resolutions of (16k)3
to (32k)3 for the Kida–Pelz initial data. A recent study byCampolina&Mailybaev (2018) suggests
that the resolution available via classical DNS is not sufficient to investigate blow-up.
The development of pancake-like structures with exponentially growing vorticity during the

early development of turbulence from smooth initial data is studied in Agafontsev et al. (2015).105

In Kerr (2013), a new kind of analysis based on rescaled vorticity moments is proposed studying
anti-parallel vortex tubes, and only double-exponential growth in vorticity is observed as opposed
to the singular behaviour suspected in a previous work by Kerr (1993). A model describing
a cascade of transformations between vortex filaments and sheets potentially explaining the
mechanism of singularity formation in the Euler equations is proposed in Brenner et al. (2016).110

Another model has been described recently in Moffatt (2019). In McKeown et al. (2018),
an iterative cascade of instabilities for head-on collisions of vortex rings is investigated both
experimentally and numerically.

1.2. Energy dissipation anomaly
We now focus on the evolution of kinetic energy in incompressible Euler flows. Of particular

interest is the question whether inviscid flows are able to dissipate energy, and if so, by which
mechanism such a behaviour can be explained, given that no viscous effects are present. The kinetic
energy dissipation equation – valid for incompressible viscous (ν > 0) flows with continuously
differentiable solution on a domain with periodic boundaries – reads (Onsager 1949; Eyink &
Sreenivasan 2006)

∂E(t, ν)
∂t

= −

∫
Ω

ν∇uν : ∇uν dΩ ,

which implies conservation of energy in the inviscid limit ν = 0 provided that the solution
is sufficiently regular. However, from phenomenological descriptions of turbulence, there is
empirical evidence that the dissipation rate does not tend to zero in the limit Re→ ∞ or ν → 0
but takes a positive value independent of ν, which is known as dissipation anomaly or the zeroth
law of turbulence (Eyink 2008; Dubrulle 2019). As noted in Eyink (2008), this has first been
observed by Taylor (1935), and also Kolmogorov’s similarity theory of turbulence (Kolmogorov
1991) is based on the assumption of a non-vanishing energy dissipation rate in the inviscid limit.
Numerical evidence that the dissipation rate is independent of ν for large Re is for example given
in Sreenivasan (1998); Kaneda et al. (2003); Orlandi et al. (2012), and experimental evidence
for example in Pearson et al. (2002); Dubrulle (2019). Under certain regularity or smoothness
assumptions (existence of a strong L3-limit; we refer to Duchon & Robert (2000); Drivas &
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Nguyen (2019); Drivas & Eyink (2019) for a precise discussion), weak Euler solutions are
the ν → 0 limit of Leray–Hopf weak solutions uν of the Navier–Stokes equations, so that the
dissipation rate in the inviscid limit equals the viscous dissipation rate in the limit ν → 0

∂Eν=0(t)
∂t

= lim
ν→0

∂E(t, ν)
∂t

= lim
ν→0
−ν

∫
Ω

∇uν : ∇uν dΩ = −D(t) 6 0 , (1.1)

where anomalous energy dissipation means that D(t) > 0 for some (or all) t > t∗.† In general,115

weak Euler solutions may neither be unique nor the zero-viscosity-limit of weak Navier–Stokes
solutions, which might themselves be non-unique (Isett 2017; Buckmaster & Vicol 2019, 2020;
Daneri et al. 2021; Buckmaster et al. 2021). In this sense, we note that the first equality in
equation (1.1) is a conditional one. Let us also refer to Brenier et al. (2011); Wiedemann (2017)
regarding the topic of weak–strong uniqueness of Euler solutions.120

The above argumentation already indicates that the theory explaining dissipation of energy in
the absence of viscosity is related to the spatial regularity of the solution. According to Onsager
(1949), energy dissipation in three-dimensional incompressible flows can take place in the absence
of viscosity by the formation of singularities,‡ with the cascade from large to (arbitrarily) small
scales taking place in finite time, see also Eyink & Sreenivasan (2006). According to Onsager’s125

conjecture, dissipation of energy may occur if the velocity is Hölder continuous with exponent6
1/3 (while Onsager’s assertion says that energy is conserved for exponents > 1/3, see Eyink
(1994); Constantin et al. (1994); Duchon & Robert (2000); Cheskidov et al. (2008) for proofs).
For mathematical literature dealing with proofs of Onsager’s conjecture we refer to De Lellis
& Székelyhidi Jr. (2013, 2014); Buckmaster et al. (2016, 2018); Isett (2018) and references130

therein, where dissipative weak Euler solutions up to Onsager’s critical regularity have been
constructed using convex integration techniques. Newest insights from these works thus confirm
that the Hölder exponent of 1/3 is indeed the critical one in terms of energy dissipation. As noted
in Dubrulle (2019), the original Kolmogorov cascade picture implies irregularities of the velocity
field (at least locally) with Hölder exponent 6 1/3, but it was Onsager who established the link135

between energy dissipation and irregularities of the velocity field for the Euler equations.
The above considerations might explain why this phenomenon is denoted as “kinetic energy

dissipation anomaly”, an alternative term used e.g. in Dubrulle (2019) is “inertial dissipation”
(as opposed to viscous dissipation). The one-dimensional inviscid Burgers equation (Burgers
1948) with formation of a shock and the associated dissipation of energy serves as a prominent140

and well-understood example, and is for example discussed in Sulem et al. (1983) in the context
of finite-time singularities and in Dubrulle (2019) in the context of inertial energy dissipation.
In Josserand et al. (2020), the phenomenon of energy dissipation through finite-time singularities
is illustrated for another one-dimensional model problem, the nonlinear Schrödinger equation. For
the two-dimensional incompressible Euler equations, it is known that singularities can not develop145

in finite time from smooth initial data (Eyink & Sreenivasan 2006). Regarding three-dimensional
turbulent flows, Onsager’s conjecture appears to be widely accepted by now with the occurrence
of singularities representing a building block of modern understandings of turbulence (Dubrulle
2019).

† As a consequence, the enstrophy is inversely proportional to the viscosity for large Reynolds numbers
in the case of anomalous dissipation with D(t) > 0.
‡ Hence, the mechanism explaining the occurrence of kinetic energy dissipation in the limit ν → 0 is that

the velocity gradient might tend to infinity in this limit. Literally, Onsager (1949) wrote: “In the absence of
viscosity, the standard proof of the conservation of energy does not apply, because the velocity field does not
remain differentiable!”. Interestingly, Onsager did not consider the energy-dissipating behaviour of inviscid
flows (“ideal turbulence”) an anomalous behaviour but rather a matter of fact.
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1.3. Interplay between physics and numerics150

The present work focuses on the numerical solution of turbulent flows and particularly the
inviscid limit. Having a closer look at numerical simulations of the inviscid Taylor–Green vortex,
it can be observed that many of these simulations have been performed mainly for small times up
to t ≈ 5 (up to t = 4 in Brachet et al. (1983, 1992); Cichowlas & Brachet (2005); Bustamante &
Brachet (2012) and up to t 6 6 in Shu et al. (2005); Chapelier et al. (2012)), but not beyond the155

time at which finite-time singularities have been suspected, especially not up to the time at which
the transition to a fully turbulent state takes place, withmaximum kinetic energy dissipation rate at
time t = 8−9 (expected fromhigh-Reynolds number viscous simulations (see Brachet et al. 1983))
and subsequent decaying turbulence. As mentioned by some of these works, one reason for this is
that the results for a specific resolution are no longer reliable at later times once the flow becomes160

under-resolved (note that the spatial resolution is severely limited by computational resources even
for large supercomputers available today). The key aspect, however, is that numerical simulations
of the incompressible Euler equations are very challenging in terms of energy stability and
numerical blow-up of the discretisation scheme. Often, a lack of robustness of the numerical
discretisation scheme is reported for this challenging inviscid Taylor–Green vortex problem (see165

for example Chapelier et al. 2012; Winters et al. 2018).
The lack of understanding of what is to be expected in terms of kinetic energy dissipation from

a physical perspective (energy dissipation anomaly discussed in section 1.2) manifests itself in an
uncertainty regarding the optimal design of discretisation schemes from a numerical perspective.
InMoura et al. (2017b,a); Piatkowski (2019), it is argued that a fundamentally different behaviour170

in terms of energy dissipation and time reversibility is expected between viscous flows in the
limit Re→∞ and inviscid flows at Re = ∞. Especially in numerical studies, it is often assumed
that energy conservation holds for an exact solution of the Euler equations not only in two space
dimensions but also in three space dimensions, see for example Shu et al. (2005); Bustamante &
Brachet (2012); Grauer et al. (1998); Chapelier et al. (2012); Winters et al. (2018); Schroeder175

(2019); Krais et al. (2020) and the recent review article by Coppola et al. (2019) to mention
just a few. Numerical schemes that are exactly energy-conserving can indeed be constructed and
have the advantage that non-linear blow-up of the numerical discretisation scheme can be avoided
in the challenging inviscid limit. For these reasons, energy-conserving schemes appear to be
the current gold standard for the simulation of this type of problems. Inviscid TGV simulations180

performed in Schroeder (2019) using exactly divergence-free, energy-conserving discretisation
methods result in an exact conservation of energy, and the results are considered superior as
compared to simulations with upwind fluxes that show a dissipative behaviour.
However, the use of energy-conserving schemes is accompanied by a major limitation,

namely that it excludes – by construction – the occurrence of anomalous energy dissipation.185

Onsager’s conjecture dictates to rethink whether it is really a desirable quality criterion that a
numerical method preserves the kinetic energy exactly in the inviscid limit ν = 0. If Onsager’s
hypothesis is true, there is an inconsistency between the physical dissipation behaviour and the
numerical dissipation behaviour of energy-conserving discretisation methods. Then, energy-
conserving numerical methods would result in an O(1) error in the case of inviscid flows190

with anomalous/inertial energy dissipation. Since no energy can leave the system for such a
discretisation scheme, energy accumulates in small scales, a well-known phenomenon called
thermalisation. In terms of the kinetic energy spectrum, an energy-conserving numerical scheme
typically leads to an unphysical equipartitioning of energy when simulating beyond the time
of the finite-time singularity (Ray et al. 2011; Orlandi 2009; Orlandi et al. 2012). The energy-195

conserving results of Schroeder (2019) indeed show such a behaviour. One may conclude that
the application of energy-conserving numerical methods is only reasonable for times t < t∗
before a potential singularity forms, since anomalous dissipation might occur afterwards.
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Further, one may formulate that a numerical scheme must contain mechanisms of dissipation
as a minimal requirement in order to address the topic of anomalous energy dissipation. To200

describe discretisation schemes suitable for investigating anomalous dissipation more precisely,
we consider it a prerequisite to use consistent and stable discretisation schemes whose dissipation
mechanisms are coupled to under-resolution effects in the numerical approximation of the
solution, i.e., the dissipation mechanisms act on the finest resolved scales and shift to smaller
scales under mesh refinement. As we discuss in more detail below, it appears to be unclear205

mathematically whether such a scheme is able to find a dissipative weak solution of the Euler
equations.
By studying Galerkin-truncated, energy-conserving simulations of the one-dimensional Burg-

ers equation, the work by Ray et al. (2011) describes an interesting phenomenon, called “tyger
phenomenon” in that work, where short-wavelength oscillations occur out-of-the-blue in the210

presence of singularities, that finally lead to thermalisation. The importance of numerical
dissipation to avoid the effect of thermalisation for this one-dimensional Burgers problem is
emphasised in a recent study by Murugan et al. (2020), which can therefore be seen in close
analogy to the present work focusing on 3D Euler.
The situation is less complicated for two-dimensional Euler flows that are non-dissipative. In215

that case, it can be expected that the kinetic energy dissipation rate converges to zero under mesh
refinement for a consistent and energy-stable discretisation scheme, and that there is per se no
conflict with physics if an energy-conserving scheme is applied.

1.4. An indirect approach to identify finite-time singularities by energy considerations
The indirect approach to identify finite-time singularities relies on the physical intuition that220

the appearance of anomalous energy dissipation in free decay from smooth initial data requires a
finite-time singularity. The basic idea is to capture the temporal evolution of the kinetic energy by
a numerical method with appropriate inbuilt dissipation mechanisms as described in Section 1.3.
If grid-convergence to a dissipative solution with non-zero kinetic energy dissipation rate can
be demonstrated numerically, indirect evidence of a finite-time singularity is provided by the225

following line of arguments:
(i) Assume convergence of a sequence of numerical solutions to a dissipative weak Euler

solution for h→ 0.
(ii) Weak–strong uniqueness holds for dissipativeweakEuler solutions (Lions 1996;Brenier

et al. 2011; Wiedemann 2017).230

(iii) Supposing that an energy dissipation anomaly with non-zero kinetic energy dissipation
rate is observed, it follows from items i and ii that a strong solution cannot exist but
must have become singular.

The conclusion in item iii is based on an indirect proof. Assume that a strong solution exists.
This strong solution is energy-conserving. By weak–strong uniqueness, the weak solution must235

be identical and, therefore, energy-conserving. By contradiction it follows that a strong solution
cannot exist.
Note that assumption i could be weakened. Rather than i, only convergence to a dissipative

generalised weak solution in the sense of Lions (1996) or DiPerna & Majda (1987) is required.
Interestingly, this weaker assumption might be provable for the limit h→ 0, as it has in fact been240

proven for the limit ν → 0 (at least along sub-sequences). Since the existence of generalised weak
Euler solutions as limits along sub-sequences relies on very general compactness arguments that
require only L2 (kinetic energy) bounds for both the Lions and DiPerna &Majda theories, a proof
for the limit h → 0 for a DG Euler discretisation scheme as used here might be conceivable in
analogy to what has been shown for the limit ν → 0. To the best of our knowledge, such a proof245

is still outstanding.
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Figure 1: Temporal evolution of kinetic energy and kinetic energy dissipation rate for the
three-dimensional Taylor–Green vortex problem for increasing Reynolds number

of Re = 100, 200, 400, 800, 1600, 3200,∞. For each Re, results are shown for two mesh
resolutions (fine mesh as solid line, coarse mesh as dashed-dotted line). The effective
resolutions (see section 3 for a definition) are 643, 1283 for Re = 100, 1283, 2563

for Re = 200, 400, 2563, 5123 for Re = 800, 10243, 20483 for Re = 1600, 20483, 40963

for Re = 3200, and 40963, 81923 for Re = ∞. The results suggest that the kinetic energy
reduces to a value as low as approximately 0.02 at time t = 20 for large Reynolds numbers,

and that a similar amount of energy dissipation takes place also in the inviscid limit.

Let us note that a similar idea to identify singularities experimentally based on energy arguments
has been used in Saw et al. (2016); Kuzzay et al. (2017) by calculating the inertial dissipation
at scale l from PIV (particle image velocimetry) measurements. To the best of the authors’
knowledge, the present study makes first attempts in using energy arguments for singularity250

detection in numerical simulations of three-dimensional Euler flows.
From numerical simulations of viscous problems at finite Reynolds number, there are indica-

tions that the zeroth law of turbulence holds for the Taylor–Green vortex problem. Numerical
results for the kinetic energy dissipation rate for increasing Reynolds numbers up to Re = 3000
shown in Brachet et al. (1983), additional results for a higher Reynolds number of Re = 5000255

shown in Brachet (1991), Re = 10000 in Arndt et al. (2020), and Re = 20000 in Lamballais
et al. (2019) strongly suggest that the function D(t) does not tend to zero in the limit ν → 0.
This argument is summarised in figure 1 showing results for viscous and inviscid simulations of
the TGV obtained with the present discretisation approach. For each Reynolds number, results
are shown for two resolutions of the numerical discretisation approach to judge whether the260

results are mesh-independent. We achieve grid-converged results for all finite Reynolds numbers
shown in figure 1. In the inviscid limit, the temporal evolution of the kinetic energy is almost
indistinguishable for the twofinest resolutions,while small differences are still visible in the energy
dissipation rate that slightly differs between the two resolutions 40963 and 81923 at later times
around the dissipation maximum and beyond. However, the onset of dissipation around t ≈ 6265

appears to be grid-converged also for this challenging inviscid simulation. These results are
consistent with grid-convergence to a dissipative solution of the incompressible Euler equations
for the three-dimensional Taylor–Green problem. Figure 1 therefore summarizes the main result
of the present work.
While the accumulation of energy in small scales in case of energy-preserving schemes270

is unphysical, it can be exploited under certain circumstances in order to gain insights into
the physical dissipation behaviour. In Cichowlas et al. (2005), an effective dissipation is
estimated from the small-scale thermalised energy of energy-conserving, spectrally truncated
Euler simulations and it is found that the large-scale Euler dynamics are similar to high-Reynolds
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number Navier–Stokes dynamics. Although the underlying numerical methods in that work275

are different from the present study,† there are interesting parallels. The onset of dissipation
around t = 5 − 6 and the dissipation maximum around t = 8 − 9 appear to be very similar to the
present results, so that both studies can be seen to complement and verify each other. From this
perspective, the study by Cichowlas et al. (2005) supports the main conclusions of our work.
Instead of considering a two-parameter limit problem h → 0, ν → 0 as illustrated in figure 1,280

the remainder of this work focuses on the one-parameter limit h→ 0 for the inviscid limit ν = 0.
Let us explain this decision inmore detail. A two-parameter study h→ 0, ν → 0would technically
not be realizable due to the large amount of computational costs required for such simulations:
Already for moderate Reynolds numbers of Re = O(104) as considered for example in Arndt
et al. (2020); Lamballais et al. (2019), the spatial resolutions required for grid-convergence285

are comparable to the highest resolution simulations that we are able to realise in the present
work for the inviscid limit. These highest resolution simulations require computational costs of
tens of millions of CPUh in the present study, despite the fact that we use a highly efficient
implementation that is well-optimized for the hardware under consideration. With the goal to
realise spatial resolutions as high as those shown in the present study, computational costs would290

allow us to only consider a single finite Reynolds number beyond what is shown in figure 1,
explaining why we immediately address the inviscid limit ν = 0.

1.5. Outline
The rest of this article is organised as follows. We describe the mathematical model of the

incompressible Navier–Stokes or Euler equations and its numerical discretisation in space and295

time in section 2. Section 3 shows results for the one-dimensional Burgers equationwith formation
of a shock, a two-dimensional shear layer problem with a numerical investigation of the kinetic
energy dissipation in the limit ν → 0, and finally the three-dimensional Taylor–Green vortex
problem that has been suspected to exhibit finite-time singularities in the inviscid limit. In
section 4, we summarise our results, draw conclusions, and raise questions based on the present300

observations.

2. Numerical methods
We seek numerical solutions to the incompressible Euler equations solved on a domainΩ ⊂ Rd

in d = 2, 3 space dimensions. These have their origin in the equations for viscous fluids with
kinematic viscosity ν described by the incompressible Navier–Stokes equations

∂u

∂t
+ ∇ · (u ⊗ u) − ν∇2u + ∇p = 0 , (2.1)

∇ · u = 0 , (2.2)

where u denotes the d-dimensional velocity vector and p the kinematic pressure. The Euler
equations are recovered by setting ν = 0. This system of partial differential equations does not
extend to d = 1 in a meaningful way, since the incompressibility constraint ∂u/∂x = 0 would
imply u = const.‡ Let us note that the temporal and spatial discretisation schemes discussed
below are generic and hold for both two- and three-dimensional problems, but that there are
major differences in terms of the flow physics and the mechanisms that make up the nature of
turbulence such as the energy transfer to small scales according to a turbulence cascade in three

† While the energy dissipation rate is derived by a postprocessing of results in Cichowlas et al. (2005),
it is simulated directly in the present work.
‡ However, the one-dimensional Burgers equation serves as a simplified mathematical model for more

complex higher-dimensional problems. While results for the inviscid Burgers equation are presented in
section 3, this section deals with discretisations of the incompressible Navier–Stokes equations for d = 2, 3.

Page 8 of 35



9

dimensions (Onsager 1949). This fundamentally different behaviour is attributed to the vortex
stretching term in the vorticity form of the Euler equations (Gibbon 2008)

Dω
Dt
= (ω · ∇) u ,

where the vortex stretching term on the right-hand side vanishes in two dimensions since the
vorticity ω is perpendicular to the velocity u in that case.
The following two subsections detail the temporal and spatial discretisation of the incompress-305

ible Navier–Stokes equations (2.1) and (2.2). Discretisation in time is based on projectionmethods
that solve for velocity and pressure unknowns in different sub-steps of a time step. Discretisation
in space is based on high-order discontinuous Galerkin (DG) methods with suitable stabilisation
techniques that render the method robust for under-resolved, high-Reynolds number flows.

2.1. Temporal discretisation – high-order projection method310

Discretisation in time is based on projection methods which aim at obtaining computationally
efficient incompressible flow solvers by decoupling the velocity and pressure unknowns (Kar-
niadakis & Sherwin 2005). A convection–diffusion type problem is solved for the velocity and
a Poisson equation for the pressure with a subsequent projection of the velocity onto the space
of solenoidal vector fields according to the Helmholtz decomposition. We use the high-order
dual splitting scheme proposed in Karniadakis et al. (1991) which consists of the following four
sub-steps

γn0 û −
∑J−1

i=0 α
n
i u

n−i

∆tn
= −

J−1∑
i=0

βni ∇ ·
(
un−i ⊗ un−i

)
, (2.3)

−∇2pn+1 = −
γn0
∆tn
∇ · û , (2.4)

ˆ̂u = û −
∆tn
γn0
∇pn+1 , (2.5)

γn0
∆tn

un+1 − ν∇2un+1 =
γn0
∆tn

ˆ̂u , (2.6)

where n denotes the current time step in which the equations are integrated from time tn to
time tn+1 = tn + ∆tn. The temporal discretisation is based on a BDF scheme of order J with
coefficients γn0 and αn

i , i = 0, . . . , J − 1. In the first sub-step, equation (2.3), the convective
term is treated explicitly in time by using a high-order extrapolation scheme of order J with
coefficients βni , i = 0, . . . , J − 1. In the next two sub-steps, a pressure Poisson equation,315

equation (2.4), is solved and a divergence-free velocity is obtained in the projection step,
equation (2.5). Finally, the viscous term is taken into account in the last sub-step, equation (2.6),
which can be omitted in case of the Euler equations, un+1 = ˆ̂u. The explicit treatment of the
convective term implies a restriction of the time step sizes according to the Courant–Friedrichs–
Lewy (CFL) condition. For reasons of computational efficiency, we use adaptive time stepping320

with variable time step sizes ∆tn by readjusting the time step size after each time step in a way
to maximise the time step size and operate close to the CFL stability limit. We introduce the
CFL condition below since it also depends on the spatial discretisation scheme. A second-order
accurate time integration scheme with J = 2 is used in the present work.

2.2. Spatial discretisation – high-order discontinuous Galerkin method325

A key element of the present study is the use of a novel high-order discontinuous Galerkin
discretisation for incompressible flows. This discretisation approach has been developed recently
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and is documented in a series of publications (Krank et al. 2017; Fehn et al. 2017, 2018b,
2019), with a focus on the stability of projection methods in Fehn et al. (2017), and a focus
on the stability and dissipation characteristics of discontinuous Galerkin discretisations for330

under-resolved turbulence in Fehn et al. (2018b, 2019). Of particular importance are the inbuilt
dissipation mechanisms of discontinuous Galerkin methods acting on the finest resolved scales of
the flow. In order to investigate the phenomenon of anomalous energy dissipation, we consider it a
prerequisite to use a discretisation scheme that provides the flexibility to find both dissipative and
non-dissipative solutions. Let us point out that all simulations shown in this work are performed335

as direct numerical simulations, i.e., without any form of explicit turbulence model or numerical
viscosity.More precisely, upwind-type numerical fluxes represent themain dissipationmechanism
of the present scheme, see also Ainsworth (2004) for a general dispersion and dissipation analysis
and distribution of dissipation among the resolved scales. Note that the H(div)-stabilization
presented below also contributes with a certain amount of dissipation. For reasons of brevity and340

to focus on the main aspects, we avoid technical aspects related to the imposition of boundary
conditions in the following, but refer to the original publications.
We assume a computational domain Ωh =

⋃Nel
e=1Ωe ∈ R

d consisting of conforming quadrilat-
eral or hexahedral elements Ωe, e = 1, . . . , Nel. A common abstraction of finite element methods
is to define a mapping xe(ξ) from a reference element Ω̃e = [0, 1]d with Cartesian coordinates ξ
to element Ωe in physical space with coordinates x, and approximate the solution within each
element by polynomials defined in reference coordinates. Here, the numerical solution in d = 2, 3
is represented by a tensor product of one-dimensional Lagrange polynomials with a Legendre–
Gauss–Lobatto point distribution, and is allowed to exhibit discontinuities between elements in
an L2-conforming sense. The spaces of shape functions are then given as

Vu
h =

{
uh ∈

[
L2(Ωh)

]d : uh (x
e(ξ)) |Ωe = ũe

h(ξ)|Ω̃e
∈ Vu

h,e = [Qk(Ω̃e)]
d , ∀e = 1, . . . , Nel

}
,

V
p
h
=

{
ph ∈ L2(Ωh) : ph (xe(ξ)) |Ωe = p̃eh(ξ)|Ω̃e

∈ V
p
h,e
= Qk−1(Ω̃e) , ∀e = 1, . . . , Nel

}
.

Here, Qk denotes the space of tensor-product polynomials of degree k, and we highlight the
ambiguity in notation related to the spatial wavenumber k in the context of energy spectra. The
polynomial degree of the velocity shape functions is k, while it is k−1 for the pressure for reasons345

of inf–sup stability. In this work, we only consider problems with Cartesian meshes so that the
mapping xe(ξ) is an affine transformation. At the interface between two elements e− and e+, the
numerical solution is not unique and we use the superscripts − and + to denote the solution from
the two sides of an interface. When referring to element e, we denote interior information by −,
and the outward pointing unit normal vector by n = n−. To define numerical fluxes, we introduce350

the average operator {{u}} = (u− + u+)/2 and the jump operator JuK = u− ⊗ n− + u+ ⊗ n+,
where n+ = −n−. We apply the usual abbreviations of integrals, (v, u)Ωe

=
∫
Ωe

v � u dΩ
for volume integrals and (v, u)∂Ωe

=
∫
∂Ωe

v � u dΓ for surface integrals with � denoting an
inner product. We now state the weak formulation for all sub-steps of the projection scheme.
Obtain the numerical solutions ûh, ˆ̂uh, ˆ̂̂uh, un+1

h
∈ Vu

h
and pn+1

h
∈ V

p
h

by testing with all test355

functions vh ∈ Vu
h,e

, qh ∈ V
p
h,e

for all elements e = 1, ..., Nel:
In the first step, the convective term is discretised by the local Lax–Friedrichs flux(

vh,
γn0 ûh −

∑J−1
i=0 α

n
i u

n−i
h

∆tn

)
Ωe

=

−

J−1∑
i=0

βni

(
−

(
∇vh, (uh ⊗ uh)

n−i
)
Ωe

+

(
vh,

(
{{uh ⊗ uh}} +

Λ

2
JuhK

)n−i
· n

)
∂Ωe

)
,

(2.7)
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where the stabilisation parameter is chosen as Λ = max
(
|u−

h
· n |, |u+

h
· n |

)
. The pressure Poisson

operator is discretised by the symmetric interior penalty Galerkin (SIPG) method(
∇qh,∇pn+1

h

)
Ωe

−

(
∇qh,

1
2
Jpn+1

h K
)
∂Ωe

−

(
qh, {{∇pn+1

h }} · n
)
∂Ωe

+
(
qh, τJpn+1

h K · n
)
∂Ωe

= −
γn0
∆tn

(
− (∇qh, ûh)Ωe

+ (qh, {{ûh}} · n)∂Ωe

)
,

(2.8)

where a central flux is used for the velocity divergence operator on the right-hand side of the
pressure Poisson equation. A central flux is also used for the pressure gradient term in the
projection step(

vh, ˆ̂uh
)
Ωe

= (vh, ûh)Ωe
−
∆tn
γn0

(
−

(
∇ · vh, pn+1

h

)
Ωe

+
(
vh, {{pn+1

h }}n
)
∂Ωe

)
. (2.9)

The viscous term is also discretised by the SIPG method(
vh,

γn0
∆tn

ˆ̂̂uh
)
Ωe

+
(
∇vh, ν∇

ˆ̂̂uh
)
Ωe

−

(
∇vh,

ν

2
J ˆ̂̂uhK

)
∂Ωe

−

(
vh, ν{{∇

ˆ̂̂uh}} · n
)
∂Ωe

+
(
vh, ντJ ˆ̂̂uhK · n

)
∂Ωe

=

(
vh,

γn0
∆tn

ˆ̂uh
)
Ωe

,

(2.10)

while this step is skipped, ˆ̂̂uh = ˆ̂uh , in the inviscid limit when solving the incompressible Euler
equations. In a final postprocessing step, consistent divergence and continuity penalty terms are
applied to weakly enforce the incompressibility constraint and normal continuity of the velocity
field (Fehn et al. 2018b, 2021) (

vh, u
n+1
h

)
Ωe

+
(
∇ · vh, τD∇ · u

n+1
h

)
Ωe

∆tn

+
(
vh · n, τC

(
u−h − u+h

)n+1
· n

)
∂Ωe

∆tn =
(
vh,

ˆ̂̂uh
)
Ωe

.
(2.11)

The above postprocessing step is specifically related to the type of spatial discretisation used in this
work, i.e., the L2-conforming discontinuous Galerkin method, and disappears in the continuous
case. It was found that the divergence and normal-continuity penalty terms are crucial in terms of
mass conservation and energy stability in order to obtain amethod that is robust for large Reynolds360

numbers and coarse spatial resolutions, and we refer to Fehn et al. (2018b, 2019) for detailed
numerical justification and validation of this approach. In this context, we note that alternatives to
this stabilised approach exist, e.g., by using tailored finite element function spaces. For example,
function spaces can be used that result in an H(div)-conforming (normal-continuous) velocity
field and that is divergence-free in every point of the computational domain. The present L2-365

conforming approach does not fulfil these two properties exactly, but in a weak finite element
sense. Definitions of the penalty parameters τ, τD, τC are given in Fehn et al. (2018b), where
the default penalty factor ζ = 1 is used in the present work unless specified otherwise. In
terms of the occurrence of finite-time singularities and anomalous energy dissipation, the present
work makes use of the argument that – due to the weighted residual formulation – the present370

discretisation can be applied to problems which lack regularity and for which the differential
form of the equations is no longer an appropriate description. With respect to the implementation
of the method, integrals in the weak form are evaluated by means of Gaussian quadrature, with
consistent integration according to the 3/2-rule for the non-linear convective term (also denoted
as polynomial dealiasing). Since we consider uniform Cartesian meshes (with elements of size h375

in all coordinate directions) in the present work, integrals are calculated exactly.
To obtain the size of the next time step within the adaptive time stepping scheme, we use the
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following local CFL condition evaluated at all quadrature points q of element e

∆t = min
e=1,...,Nel

(
min
q

Cr
k1.5

h
‖uh ‖

����
q,e

)
, (2.12)

ensuring stability of the time integration scheme by selecting a Courant number Cr < Crcrit. Note
that – due to the CFL condition – an increase in spatial resolution by reducing h or increasing k
automatically implies an increase in temporal resolution through a reduced time step size.
The present incompressible flow solver is implemented in C++ and forms a core module of380

the ExaDG (High-Order Discontinuous Galerkin for the Exa-Scale) software, which is publicly
available on github.† The ExaDG software primarily makes use of the open-source finite element
library deal.II (Arndt et al. 2021; Alzetta et al. 2018). The computational efficiency of the
present discretisation methods in terms of fast implementations and fast iterative solvers is
discussed in Fehn et al. (2018a, 2020); Kronbichler & Kormann (2019); Arndt et al. (2020).385

3. Results
This section presents numerical results for three test cases in d = 1, 2, and 3 space dimen-

sions. The one-dimensional problem is the well-known inviscid Burgers equation developing a
singularity in finite-time for appropriate initial conditions. The two-dimensional example is a
shear layer roll-up problem. The particular example used for the d = 2 investigations is not of390

primary importance as it is known theoretically that regularity is expected for two-dimensional
Euler flows when starting from regular initial data. Instead, the aim of these one- and two-
dimensional examples is an investigation to which extent the numerical discretisation scheme
is able to mimic physical behaviour with potentially singular solutions. Having validated the
numerical method for these well-understood problems, it is applied to the three-dimensional395

inviscid Taylor–Green problem, for which the physical understanding in terms of the occurrence
of finite-time singularities and the related aspect of anomalous energy dissipation is speculative
at present. As a further preparation, we summarise the quantities of interest in the following
subsection.

3.1. Quantities of interest400

Since turbulent flows in three space dimensions are our primary interest, we restrict the
discussion in this subsection to the three-dimensional case implying extensions of certain relations
to one- and two-dimensional problems onlywhere possible. Of primary importance for the present
study is the temporal evolution of the kinetic energy

E(t) =
1

VΩ

∫
Ω

1
2
u(x, t) · u(x, t) dΩ ,

and its dissipation rate dE/dt. The kinetic energy is normalised by the volumeVΩ =
∫
Ω

1dΩ of the
computational domain. The integrals are evaluated numerically by means of Gaussian quadrature
with k + 1 quadrature points in each coordinate direction. The time derivative used to obtain the
dissipation rate is computed numerically from the kinetic energy at discrete instants of time via a
second order finite difference formula for variable time step sizes with first order approximations
at the end points. If anomalous dissipation (dE/dt < 0) occurs, the temporal evolution of the
enstrophy E,

E(t) =
1

VΩ

∫
Ω

1
2
ω(x, t) · ω(x, t) dΩ ,

† See https://github.com/exadg/exadg.
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is expected to exhibit a singularity E → ∞ in finite time. Integrals are computed by Gaussian
quadrature, which is exact down to round-off errors due to polynomial integrands and Cartesian
meshes. A related local quantity is the maximum vorticity

‖ω‖∞(t) ,

where we take the maximum over all quadrature points over all elements in the discrete case and
monitor its evolution over time with the interest in a detection of potentially singular behaviour
in finite time. Although the maximum vorticity will remain finite for every numerical simulation
of finite resolution, a mesh refinement study may give hints on the expected behaviour if the
resolution was further increased. Finally, we consider kinetic energy spectra by transformation
into wavenumber space k (Cichowlas & Brachet 2005; Bustamante & Brachet 2012)

E(k, t) =
1
2

lim
∆k→0

∫ ‖k ‖=k+∆k
‖k ‖=k

‖ û(k, t)‖2dk

∆k
DFT
≈

∑
k∈Z3

k− 1
26‖k ‖<k+

1
2

1
2
‖ ûDFT(k, t)‖2 ,

where û(k, t) denotes the Fourier transform of the velocity, which only exists at discrete
wavenumber vectors k in case of a discrete Fourier transformation (DFT) obtained from sampled
data of a discrete velocity field. The solution is first interpolated onto N equidistant points per
element and per coordinate direction† to which the discrete Fourier transformation is applied,
using the library FFTW (Frigo& Johnson 2005) in the presentwork.Note that considering E(k, t) as405

a function of a scalar wavenumber k as well as the summation over spheres of radius k introduces
the assumptions of homogeneity and isotropy. In case of anomalous energy dissipation, the
enstrophy is expected to become infinite. Hence, exploiting the relation E(k, t) = k2E(k, t)
between the enstrophy and energy spectra and further assuming a power law behaviour for
the kinetic energy spectrum of the form E(k, t) = C(t)k−n(t), a singularity at time t = t∗410

with E(t∗) =
∫ ∞
0 E(k, t∗)dk = ∞ would correspond to a decay with slope n(t∗) = 3 in the

energy spectrum, see also Orlandi et al. (2012); Orlandi (2009). We use this criterion as a
further validation of the results in case other quantities give hints of a potentially singular
behaviour.Apart from that, energy spectra are typically investigated to assess thewell-known k−5/3

Kolmogorov spectrum for fully-developed, homogeneous isotropic turbulence. We apply this415

property to investigate whether the numerical results match expected physical behaviour obtained
from classical cascade pictures in case of inviscid flows and beyond the time of potential
singularities, t > t∗.

3.2. One-dimensional inviscid Burgers equations
We begin with studying the one-dimensional inviscid Burgers equation (Burgers 1948)

∂u
∂t
+

∂

∂x
u2

2
= 0 ,

as a simplified model for the incompressible Euler equations. It is well known that this equation420

develops singularities in finite time, see for example Sulem et al. (1983); Dubrulle (2019).
Previous works demonstrate that the use of energy-conserving discretisation schemes leads to
thermalisation for this type of problems, see for example Ray et al. (2011); Murugan et al. (2020).

† The number of sampling points is chosen as N = k + 1 in the present work, i.e., equal to the number
of nodal points of the discontinuous Galerkin discretisation, where k is the polynomial degree of the shape
functions and should not be mixed up with the wavenumber k typically used in the context of energy spectra.
The equidistant interpolation points all lie within the element away from the boundaries where the solution
is discontinuous. If interpolation points on the boundary are used, one typically takes the average of the
solution from neighbouring elements.
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Figure 2: One-dimensional inviscid Burgers equations for two different initial solutions
that form a singularity: On the left, the initial condition is a sine function, while it is a

simple hat function that is piecewise linear on the right. The spatial resolution used for the
computations corresponds to refinement level l = 6 and polynomial degree k = 3,

resulting in an effective resolution of 2561.

It is therefore particularly interesting to study the behaviour of a discretisation scheme for this
simplified problem first. The spatial discretisation is based on a discontinuous Galerkin scheme425

very similar to the one described in section 2 for the two- and three-dimensional case, i.e., the
convective term is discretised with a local Lax–Friedrichs flux. Gaussian quadrature with a 3/2-
overintegration rule is used as in the higher dimensional case due to the quadratic nonlinearity
of the convective term, but intentionally no additional measure such as limiting, filtering, or
other Riemann fluxes are taken to specifically address the jump that forms in the solution. We430

also emphasise that no artificial viscosity approach is used to deal with the singularity. For time
integration, the classical explicit fourth-order Runge–Kuttamethod is usedwith a Courant number
of Cr = 0.4.
Figure 2 shows the numerical solution uh(x) at various instants of time and the formation of

a shock. The problem is solved on the domain Ω = [−1, 1] with Dirichlet boundary conditions
prescribed at both boundary points of the one-dimensional domain. An equidistant grid with 2l
elements is used where l denotes the level of refinement. For polynomial approximations of
degree k, the effective resolution becomes (k + 1)2l . We exemplarily select two different initial
solutions, a sine function, uh(x, t = 0) = − sin(πx), and a hat function, uh(x, t = 0) = −2|x +
0.5| + 1 for x < 0 and uh(x, t = 0) = 2|x − 0.5| − 1 for x > 0. Due to the chosen initial
conditions with u > 0 for x < 0 and vice versa, the solution piles up in the middle of the domain
and a singularity (∂u/∂x → ∞) forms at x = 0 in both cases. The oscillating behaviour of
the numerical solution around the singularity could be improved by the advanced discretisation
techniques mentioned above. From the results shown in figure 2 it is plausible that the kinetic
energy is conserved until the formation of the shock and that energy will be dissipated at later
times. For the hat function chosen as initial condition, it is straight-forward to derive an analytical
expression for the temporal evolution of the kinetic energy as well as its dissipation rate, which
is why we consider this setup in more detail in the following. According to the method of
characteristics it follows that the shock forms at time t∗ = 0.5. From that time on, the solution
can be written as

u(x, t) = f (t) (x − sign(x)) ,

where sign(x) takes values of ±1 depending on the sign of the argument. The temporal evolution
part f (t) which describes the absolute value of u taken to the left and right of the origin of the
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Figure 3: One-dimensional inviscid Burgers equations with hat function as initial
condition: temporal evolution of kinetic energy as well as dissipation rate and convergence
towards analytical profile for a mesh refinement study with refine levels l = 2, . . . , 5 and

polynomial degree k = 3, resulting in effective resolutions of 161, . . . , 1281.

coordinate system at x = 0 can be obtained from the following consideration

f (t + dt) = f (t) −
∂u(x, t)
∂x

����
x=0−︸          ︷︷          ︸

= f (t)

dx︸︷︷︸
=u(x=0−,t)dt
= f (t)dt

= f (t) (1 − f (t)dt) ,

i.e., the solution at x = 0− at time t + dt equals the solution at position −dx = −u(x = 0−, t)dt
at time t. Separation of variables and integration yields the result f (t) = 1/(t + t∗). The kinetic
energy E(t) =

∫
Ω

1
2 u2(x, t)dx is therefore given as

E(t) =
∫ 1

−1

1
2

f 2(t) (x − sign(x))2 dx =
f 2(t)

3
.

The kinetic energy dissipation rate is obtained by differentation which yields a (t + t∗)−3 decay
for times t > t∗. The dissipation rate is ∆u3/12 when expressed in terms of the jump ∆u of435

the solution, in agreement with the result in Dubrulle (2019) where it is noted that this inviscid
dissipation is identical to the dissipation of the viscosity solution in the limit ν → 0. In figure 3, we
show results for both the kinetic energy and the dissipation rate for a sequence of mesh refinement
levels of l = 2, . . . , 5 with degree k = 3, resulting in effective resolutions of 161, . . . , 1281. For
increasing spatial resolution, the numerical results converge to the analytical profiles. It can be440

seen that achieving grid-convergence for the dissipation rate requires higher spatial resolutions
as compared to the temporal evolution of the kinetic energy itself. This is expected since the
dissipation rate contains a temporal derivative that results in a higher sensitivity with respect to
deviations (here numerical discretisation error) from the exact solution.
Figure 4 shows the same results for the problem with sine function as initial condition. We445

observe that the onset of energy dissipation is smooth as opposed to the hat function where the
kinetic energy exhibits a kink and the dissipation rate a jump at the time of the singularity. In
other words, the occurrence of a finite-time singularity does not imply an instantaneous onset of
dissipation. We keep this in mind when considering the three-dimensional inviscid Taylor–Green
problem which is a problem that also starts from sine-like initial data.450

The point that we want to make with this example is that a discretisation scheme that
involves purely numerical mechanisms of dissipation can provide the physically correct amount
of dissipation for a sufficiently fine spatial resolution, see also the discussion in the introduction.
Note that this is fundamentally different from viscosity solutions uν for small ν > 0, for which the
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Figure 4: One-dimensional inviscid Burgers equations with sine function as initial
condition: temporal evolution of kinetic energy as well as dissipation rate and mesh

refinement study with refine levels l = 2, . . . , 5 and polynomial degree k = 3, resulting in
effective resolutions of 161, . . . , 1281.

required dissipation is realised by the additional viscous term in the equations and for which the455

dissipation stemming from the numerical discretisation scheme tends to zero if the mesh resolves
the viscosity solution uν exhibiting steep but finite gradients. Although the one-dimensional
Burgers equation can not reflect the complexity of three-dimensional turbulent flows, these results
put confidence in numerical discretisation schemes to also predict the solution in a physically
correct way for the higher-dimensional problems studied below.460

3.3. Two-dimensional shear layer problem
We consider the two-dimensional shear layer roll-up problem (Brown 1995) where the initial

velocity is given as

u(x, t = 0) = (tanh (ρ(0.25 − |x2 − 0.5|)) , δ sin (2πx1))
T .

Following Brown (1995), we set the two parameters ρ, δ to ρ = 30 and δ = 0.05. The problem is
solved on the domain Ω = [0, 1]2 with periodic boundaries in both directions. In the following,
different viscous simulations with viscosities ν = 2.5 · 10−3, 10−3, 10−4 are considered, as well as
the inviscid limit with ν = 0. The mesh is uniform Cartesian with (2l)2 elements for refinement465

level l, the polynomial degree of the shape functions is k = 7, resulting in the effective resolution
of

(
(k + 1)2l

)2. The simulations are run for the time interval 0 6 t 6 4. The time step size is
adapted dynamically with a Courant number of Cr = 0.25.
The aim of this example is to verify the robustness and accuracy of the present high-order

discontinuous Galerkin discretisation for a simple two-dimensional example. As mentioned in470

the introduction, the energy is conserved for the two-dimensional incompressible Euler equations,
and this property should be preserved by a consistent discretisation scheme for sufficiently fine
spatial resolutions. Figure 5 shows contour plots of velocity magnitude and vorticity magnitude
at time t = 1.2 for a mesh with 162 elements (refinement level l = 4) for different values of
the viscosity. In figure 6, we show the temporal evolution of the kinetic energy and the kinetic475

energy dissipation rate for the different viscosity values. For each viscosity, results obtained
on three meshes of increasing resolution with 42, 82, and 162 elements are shown. For large
viscosities, ν = 2.5 · 10−3 and 10−3, the results for the temporal evolution of the kinetic energy
and dissipation rate coincide for all meshes. Also for the smallest viscosity of ν = 10−4 and
the inviscid limit ν = 0 the results obtained on the two finest meshes coincide and only minor480

deviations can be observed for the coarsest mesh. This is in qualitative agreement with the contour
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(a) Velocity magnitude for ν = 2.5 · 10−3, 10−3, 10−4, 0 (from left to right).

(b) Vorticity magnitude for ν = 2.5 · 10−3, 10−3, 10−4, 0 (from left to right).

Figure 5: Two-dimensional shear layer roll-up problem: contour plots of velocity
magnitude and vorticity magnitude at time t = 1.2 for four different values of the viscosity
(blue indicates low value and red high value). The results shown correspond to a mesh

with 162 elements with a polynomial degree of k = 7 (effective resolution 1282).

plots for the velocity magnitude in figure 5 which demonstrate that the velocity field is smooth and
well-resolved on the finest mesh for all viscosities. The resolution requirements are higher for the
vorticity containing spatial derivatives of the velocity field. As already noted in Brown (1995),
the vorticity field is still not well-resolved even if convergence has already been achieved for the485

velocity or kinetic energy. It can be seen from figure 5 that the vorticity field is well-resolved for
the viscous cases ν = 2.5 · 10−3, 10−3, 10−4, but shows grid-dependence with numerical artefacts
in the form of elevations of the vorticity at the element corners especially in the thin shear layer
that is most difficult to resolve. In agreement with what is expected physically, the kinetic energy
dissipation rate tends to zero for ν → 0 and the kinetic energy is conserved in the inviscid490

limit ν = 0. Of particular importance w.r.t. the interpretation of results shown in section 3.4 for
the three-dimensional Taylor–Green problem is the observation that the numerical dissipation
occurring in the inviscid limit ν = 0 for coarse spatial resolutions decreases to zero under mesh
refinement for this two-dimensional problem.
An important aspect concerns the numerical robustness of the discretisation scheme.495

In Chalmers et al. (2019), instabilities are reported for the same shear layer problem with
viscosity ν = 0 for a discontinuous Galerkin discretisation with polynomial degree k = 7 and
refinement level l = 4. This originates from the fact that the stabilised discretisation techniques
developed in Krank et al. (2017); Fehn et al. (2018b) that render the discretisation robust
in under-resolved scenarios and that are used in the present work have not been applied in500

that study. No robustness problems have been observed for the present discretisation scheme
even for the coarsest resolutions, e.g. refinement levels of l = 0, 1 not shown explicitly here,
which is a prerequisite to obtain a feasible incompressible flow solver for three-dimensional
turbulent flow problems that are even more challenging in terms of the stability of a numerical
discretisation scheme. Instabilities have also been reported for continuous spectral element505

discretisations for this two-dimensional shear layer problem, where filtering techniques can be
used to recover stability (Fischer & Mullen 2001), at the cost of introducing new parameters
into the discretisation scheme. A recent study by Thalabard et al. (2020) uses a pseudo-spectral
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Figure 6: Two-dimensional shear layer roll-up problem: temporal evolution of kinetic
energy and kinetic energy dissipation rate for decreasing viscosity values

of ν = 2.5 · 10−3, 10−3, 10−4, and 0. For each visosity, results are shown for three different
effective resolutions of 322 (dotted lines), 642 (dashed lines), and 1282 (solid lines)

corresponding to meshes with 42, 82, and 162 elements with polynomial degree k = 7.

scheme with hyperviscous linear dissipation to investigate a two-dimensional Kelvin–Helmholtz
problem. A discretisation technique with properties similar to the present stabilised DG510

discretisation in terms of robustness and accuracy are exactly divergence-free H(div)-conforming
discretisations, see for example the studies by Guzmán et al. (2016); Fu (2019) analysing this
shear-layer problem, the study by Schroeder & Lube (2018) discussing other two-dimensional
examples such as the Kelvin–Helmholtz instability problem, and the study by Fehn et al. (2019)
comparing H(div)- and stabilized L2-conforming discretisations for three-dimensional turbulent515

flow problems in under-resolved scenarios.

3.4. Three-dimensional Taylor–Green vortex problem
We consider the 3D Taylor–Green vortex problem (Taylor & Green 1937) defined by the

following initial velocity field

u(x, t = 0) = (sin x1 cos x2 cos x3,− cos x1 sin x2 cos x3, 0)T .

Results of viscous simulations for increasing Reynolds number Re = 1
ν are given in figure 1.

In the following, the focus in entirely on the inviscid limit ν = 0. The simulations are run over
the time interval 0 6 t 6 T = 20 to cover the different flow regimes of laminar flow, transition
to turbulence, and decaying turbulence. To reduce computational costs for fixed resolution of
the flow (or to increase the effective resolution for a given amount of computational costs) it is
common practise to exploit the symmetry of the Taylor–Green problem and simulate the flow on
the impermeable boxΩ = [0, π]3 with symmetry boundary conditions on all boundaries (Brachet
et al. 1983), i.e.,

u · n = 0 ,
∂u

∂n
= 0 ,

as opposed to the periodic box Ω = [−π, π]3 that is also used in computational studies. This
optimisation allows to reduce computational costs by a factor of 8 for the presentDGdiscretisation.
Further symmetries can be exploited by spectral methods leading to the so-called fundamental520

box (Brachet et al. 1983; Kida 1985).
The computational domainΩ = [0, π]3 is discretised using a uniform Cartesian grid consisting

of (2l)d elements, where l denotes the level of refinement. The number of unknowns is given
as NDoFs = (2l)d(d(ku + 1)d + (kp + 1)d) = (2l)d(d(k + 1)d + kd). It is common practise
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in the literature to express the effective mesh resolution in terms of the periodic box to obtain525

comparability between different discretisation techniques that exploit different levels of symmetry.
Hence, we define the effective spatial resolution as (2l+1(k + 1))d , e.g., the effective resolution
is 643 for refine level l = 3 and polynomial degree k = 3. Absolute tolerances of 10−12 and
relative tolerances of 10−6 are used for the iterative linear solvers, where relative tolerance means
that the residual is reduced by a factor of 10−6 compared to the initial residual that uses as initial530

guess a high-order extrapolation of the solution from previous time steps. The polynomial degree
used for the TGV simulations is k = 3 and adaptive time stepping with Cr = 0.25 is used for
all simulations. The penalty factors of the divergence and continuity penalty terms are chosen
as defined in Fehn et al. (2018b), except for the finest resolution of 81923 where the penalty
factors have been increased by a factor ζ = 2 compared to the standard definition. For this fine535

resolution, the simulation remained stable also for the default value of ζ = 1, but we observed
oscillations in the maximum vorticity at early times, giving an indication of the need for a slightly
larger penalisation of the divergence-free constraint and normal continuity of the velocity field.
Since these oscillations disappeared when increasing the penalty factors by a factor of 2, this
value has finally been used for this highest resolution simulation. The highest resolution of 81923

540

has NDoFs = 2.35 · 1011 unknown degrees of freedom, and 2.27 · 105 time steps have been solved
during this simulation. The computations have been performed on a large supercomputer using
almost 100k cores for the highest resolution, requiring a run time of approximately 8.4 days.

3.4.1. Recapitulating the state-of-the-art

This section briefly summarises the type of discretisation, the maximal effective resolutions,545

and the final time T of the simulations considered in previous numerical studies for the three-
dimensional inviscid Taylor–Green vortex problem. In Brachet et al. (1983), a spectral method
with maximum resolution of 2563 (exploiting symmetry) has been used and direct simulation has
been performed up to times t 6 4. In a subsequent work by Brachet et al. (1992), a maximum
resolution of 8643 (exploiting symmetry) has been reached, and again direct simulation has been550

performed up to times t 6 4. A comparsion of a spectral method and WENO finite difference
method can be found in Shu et al. (2005), where a maximum resolution of 3683 (exploiting
symmetry) and simulation up to times t 6 6 has been considered. A modal discontinuous
Galerkin method has been studied in Chapelier et al. (2012), with the simulations performed
up to times t ≈ 5 − 7 until the simulations became unstable, with the maximum resolution of555

around 963 for different polynomial degrees from k = 1 to k = 5. DG discretisations used to
study the inviscid TGV problem have also been analyzed in Moura et al. (2017b,a); Fernandez
et al. (2018); Manzanero et al. (2020); Schroeder (2019), but with a focus on LES (large eddy
simulation) modelling. The study by Cichowlas & Brachet (2005) used a spectral method with
maximum resolution of 20483 with simulations performed up to times t 6 4. The highest560

resolution of 40963 has been achieved in Bustamante & Brachet (2012) using a spectral method,
and the simulations have been performed up to times t 6 4.
In these works, indications of finite-time singularities are mentioned. InMorf et al. (1980), t∗ =

5.2 is obtained from power series expansions. A more accurate variant using power series
expansions presented in Brachet et al. (1983) leads to t∗ = 4.4 ± 0.2. Furthermore, the study565

by Brachet et al. (1983) reports indirect evidence for a finite-time singularity according to the
direct numerical simulation results but the authors conclude that the resolution of 2563 is not
sufficient to investigate the occurrence of finite-time singularities for times t > 4. The more recent
study by Bustamante & Brachet (2012) estimates a blow-up time of t∗ ≈ 4 and concludes that the
results are not inconsistent with the occurrence of a singularity. The work by Larios et al. (2018)570

obtains a blow-up time of t∗ ≈ 4.2 similar to the blow-up time in Brachet et al. (1983).
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(a) Velocity magnitude on plane x = π at times t = 0, 1, 2, 3, 4 (from left to right).

(b) Vorticity magnitude on plane x = π at times t = 0, 1, 2, 3, 4 (from left to right).

Figure 7: Three-dimensional inviscid Taylor–Green problem: contour plots of velocity
magnitude and vorticity magnitude (blue indicates low value and red high value) on
plane x = π of impermeable box. The results shown correspond to a mesh with 323

elements with a polynomial degree of the shape functions of k = 3 (effective
resolution 2563).

3.4.2. Results in physical space
The early stage of the Taylor–Green vortex evolutionwith the formation of thin flow structures is

visualised in figure 7. Similar results have been shown and discussed in detail already in Brachet
et al. (1983) for the same effective resolution of 2563 using a spectral method. In agreement575

with the above results for the two-dimensional shear layer problem, we observe that the velocity
field is resolved at all times, while under-resolution effects are clearly visible in the contour
plots of the vorticity magnitude at later times t = 3 and t = 4 for the chosen resolution. A
high-resolution visualisation of the thin vortex sheet shown in figure 7 with a volume rendering
of the vorticity magnitude has been shown in Bustamante & Brachet (2012) for an effective580

resolution of 40963. Figure 8 shows visualisation results for a high-resolution simulation (effective
resolution 20483) at later times t = 4, 5, 6, 7, 8, 9, around which small-scale features occur and
transition to turbulence takes place. These results illustrate that the present discretisation scheme
does not lead to thermalisation, which appears to be a prerequisite to obtain physically meaningful
results, compare for example the present results to the thermalised results shown in (Schroeder585

2019, Figure 9.14). Flow visualisation is discussed in the literature as one possibility to trace
finite-time singularities, but appears to be impractical due to the difficulties in handling large data
sets for high-resolution simulations necessary for such investigations, and due to the difficulties
in visualising singularities (that do not show up as singularities for a finite-resolution numerical
simulation). Hence, the attention is turned to other techniques in the following.590

We present numerical results of a mesh convergence study for refinement levels l = 3, ..., 10
and polynomial degree k = 3. Figure 9 shows the temporal evolution of the kinetic energy and the
kinetic energy dissipation rate. At small times t, the energy is constant and the energy dissipation
rate is zero. This agrees with the expected theoretical behaviour stating energy conservation as
long as the solution remains smooth and has also been shown in previous works in a similar595

way. In this work, we do not want to terminate the simulations once we expect the simulation
to become under-resolved, but instead continue the simulations until t = 20. Depending on the
effective mesh resolution, an onset of energy dissipation can be observed that shifts towards later

Page 20 of 35

Cambridge University Press

Journal of Fluid Mechanics



21

(a) t = 4 (b) t = 5 (c) t = 6

(d) t = 7 (e) t = 8 (f) t = 9

Figure 8: Three-dimensional inviscid Taylor–Green problem: iso-surfaces of Q-criterion
at times t = 4, 5, 6, 7, 8, 9, where the blue surface corresponds to a value of −0.5 and the
orange surface to a value of 0.5. The results correspond to a mesh with 2563 elements
with a polynomial degree of the shape functions of k = 3 (effective resolution 20483).

times for increasing spatial resolution. However, this time of onset of dissipation does not seem
to be pushed beyond t ≈ 5 even for the finest spatial resolutions. This is illustrated more clearly in600

figure 10, which plots the kinetic energy dissipation rate in logarithmic scaling as well as the error
against the fine-resolution simulation (ref). The fact that the dissipation rate of the simulations
with 20483, 40963 resolution “converges” to that of the finest resolution at a time t ≈ 5 for 20483

and t < 5 for 40963 is consistent with a potential blow-up time t∗ < 5 in our opinion. Overall,
we make the interesting phenomenological observation that the kinetic energy evolution and its605

dissipation rate tend to converge to a dissipative solution rather than an energy-conserving solution
with vanishing dissipation rate. As in high-Reynolds number viscous simulations of this problem,
the kinetic energy dissipation rate reaches a maximum at t = 8 − 9 and decreases afterwards. In
section 3.4.5, grid-convergence of the sequence of discrete solutions to a dissipative reference
solution is investigated in more detail. Note that the present results for the dissipation rate agree610

well with those shown in Cichowlas et al. (2005) for an energy-conserving scheme, where an
effective dissipation rate is deduced from the thermalised energy Eth(t), the energy associated to
the small scales with wavenumber k > kth, where kth is the wavenumber at which the energy
spectrum exhibits a local minimum.
It is now examined whether this behaviour is consistent with the temporal evolution of the615

maximumvorticity and the enstrophy shown in figure 11. For both quantities, one can immediately
identify three phases: (i) a first phase up to approximately t ≈ 3 in which the flow is well
resolved for all spatial resolutions so that the results essentially overlap for all simulations, (ii)
an intermediate phase 3 < t < 5 in which the different simulations start to deviate from each
other due to under-resolution effects depending on the spatial resolution of each simulation,620
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Figure 9: Three-dimensional inviscid Taylor–Green problem: temporal evolution of
kinetic energy (left) and kinetic energy dissipation rate (right) for increasing effective

spatial resolution.

Figure 10: Three-dimensional inviscid Taylor–Green problem: temporal evolution of
kinetic energy dissipation rate in logarithmic scaling (left) and error against

fine-resolution simulation (right).

and (iii) a final phase t > 5 in which the results of all simulations deviate substantially due to
the different resolution capabilities of the different simulations. In the first phase, the vorticity
first decreases, reaches a minimum, and then begins to grow exponentially in agreement with the
results shown in Bustamante & Brachet (2012, figure 1 (b)). In figure 11, we added a reference
curve with exp

(
2
3 t

)
growth which describes the growth of the maximum vorticity very well625

in this regime. In the second phase at around t ≈ 3.5, the maximum vorticity begins to grow
substantially faster, and the growth of vorticity essentially depends on the spatial resolution that
is directly linked to the maximum velocity gradient that can be represented on a given mesh.
As already mentioned in the introduction, for every simulation that does not blow up due to
numerical instabilities of a discretisation scheme, the maximum vorticity will remain finite no630

matter how fine the spatial resolution is. Therefore, the occurrence of a finite-time singularity
with limt→t∗ ‖ω‖∞ = ∞ remains speculative. While our results might be considered consistent
with such a vorticity blow-up scenario, we are not able to identify a concrete blow-up time t = t∗
from the present results. We rather observe that the time of maximum vorticity observed in this
second phase is shifted to later times also for the finest spatial resolutions. At the same time, one635

might argue that a finite-time blow-up at a time t = t∗ with t∗ ≈ 4 − 5 would produce results
similar to those shown here, with the maximum vorticity following the exact profile until the
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Figure 11: Three-dimensional inviscid Taylor–Green problem: temporal evolution of
maximum vorticity (left) and enstrophy (right) for increasing effective spatial resolution.

curve of a specific spatial resolution branches off due to under-resolution of the simulation. In
such a scenario, one would expect the maximium vorticity to grow by a factor of 2 for refinement
level l → l + 1 due to the mesh size being reduced by a factor of 2, allowing numerical gradients640

becoming twice as large. While we observe such an increase in maximum vorticity from one
refinement level to the next, it is not clear whether this suspected blow-up would happen in finite
time. In the third phase, the maximum vorticity reaches a global maximum between t = 6 − 7
for each resolution before it starts to decrease slowly. In this phase, the maximum vorticity is
offset by a factor of approximately 2 from one refine level to the next. This is a clear indication645

that none of the simulations is able to resolve the finest structures, and it is plausible that a factor
of 2 in mesh size also gives a factor of 2 in maximum vorticity. Finally, the maximum vorticity
shows a strongly fluctuating behaviour in the third phase. Note that the maximum vorticity is
determined numerically by taking the maximum over all quadrature points, i.e., the vorticity
field is sampled in discrete points. This effect is negligible for well-resolved scenarios but might650

explain an oscillatory behaviour in case a local maximum travels through the domain.
The temporal evolution of the enstrophy is overall similar to that of the maximum vorticity.

An important difference is that the enstrophy does not reach a local minimum at early times
as observed for the maximum vorticity. In the second phase, the growth of enstrophy is more
moderate compared to the maximum vorticity. In the third phase, the enstrophy curves can655

be described essentially as smoothed variants of the maximum vorticity from which the high-
frequency content has been removed. A possible explanation for the enstrophy behaviour in the
second and third phase is that the enstrophy is not a local quantity, but an average in space over the
computational domain. Again, a growth in enstrophy by a factor of two from one mesh level to the
next is observed at later times, which is consistent with an enstrophy evolution theoretically taking660

infinite values, or taking finite values but much larger than those obtained numerically in figure 11.
Considering Onsager’s conjecture as valid, it is clear that one can not expect convergence for
the temporal evolution of maximum vorticity and enstrophy. Theoretically, convergence can then
only be expected for the kinetic energy evolution and to some extent for kinetic energy spectra up
to the resolution limits of the discretisation scheme, as discussed in the following.665

3.4.3. Results in spectral space
Figure 12 shows kinetic energy spectra for increasing spatial resolution at various instants of

time, namely at t = 1, . . . , 9 in steps of width 1. Results are shown for resolutions of 1283 to 20483.
High computational costs and memory requirements of the FFT (fast fourier transformation) part
of our simulations did not allow us to perform the spectral analysis for the highest resolutions670
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(a) Effective resolution of 1283

(b) Effective resolution of 2563

(c) Effective resolution of 5123

Figure 12: Three-dimensional inviscid Taylor–Green problem: kinetic energy spectra for
effective resolutions of 1283, 2563, 5123 at times t = 1, 2, ..., 9.

of 40963 and 81923. For a discussion of the general behaviour of energy spectra as a function
of time regarding the early time behaviour t 6 4 we refer to Brachet et al. (1983); Cichowlas
& Brachet (2005); Bustamante & Brachet (2012), where it is shown how the energy spectra can
be fitted to functions of the form E(k, t) = C(t)k−n(t) exp (−2kδ(t)) and where values obtained
for n(t) and δ(t) are discussed in detail. To verify the present results, we include reference675

curves of slope n = 3 (blow-up of enstrophy) and n = 5/3 (Kolmogorov’s inertial scaling
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(d) Effective resolution of 10243

(e) Effective resolution of 20483

Figure 12: Three-dimensional inviscid Taylor–Green problem: kinetic energy spectra for
effective resolutions of 10243, 20483 at times t = 1, 2, ..., 9.

law) or n = 7/3 (motivated by results obtained in Piatkowski (2019) for viscous Taylor–Green
simulations). The energy spectra are compared against the slope n = 3 as a means to investigate
the plausibility of a potentially singular behaviour and to identify a time t = t∗ at which such
a blow-up could occur, as motivated in section 3.1. Once the flow has transitioned to a fully680

turbulent state, it can be expected that the energy spectrum exhibits some form of Kolmogorov
scaling. For this purpose, we consider the energy spectra at times t = 8 and 9 where the maximum
dissipation rate occurs, even though the flow might not be fully homogeneous isotropic at that
time and the results might deviate from Kolmogorov’s k−5/3 scaling. To quantify the resolution
capabilities of the present discretisation, we also plot the Nyquist wavenumber kNyquist as well as685

the wavenumber k1% according to the 1%-rule by Moura et al. (2017b) that aims at obtaining an
accurate resolution limit for upwind-like DG discretisations for a specific polynomial degree of
the function space.
Figure 12 shows that the range of scales resolved by the numerical method increases with

increasing spatial resolution as expected theoretically, and that the resolution limit for polynomial690

degree 3 is described very well by the 1%-rule corresponding to this degree. The energy spectra
reach a slope of −3 between t = 4 and t = 5, making our results consistent with the occurrence
of singular behaviour around that time (4 < t∗ < 5), in agreement with the rapid growth of
the maximum vorticity observed in the same time interval, see figure 11. The spectra in the
inertial range show a decay slightly stronger than k−5/3 and better agreement is achieved when695

compared to a k−7/3 scaling that is also shown in figure 12. This behavior has already been
observed in Piatkowski (2019) for viscous Taylor–Green vortex simulations, where it was found
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that Kolmogorov’s k−5/3 scaling can only be observed at later times, e.g., t ≈ 20. Regarding the
inertial scaling, the present results are therefore in agreement with results shown in the literature.
Towards the Nyquist wavenumber, a moderate pile-up of energy can be observed by comparison700

against the −5/3 and −7/3 references slopes before the energy falls off very rapidly. The energy
pile up is characteristic of this type of high-order discontinuous Galerkin approach and becomes
stronger for higher polynomial degrees, see Moura et al. (2017b,a) and references therein. This
particular behaviour is often the primary target when optimizing discretisation schemes, see for
example the recent studies by Flad & Gassner (2017); Winters et al. (2018); Manzanero et al.705

(2020) and references therein, where it is suggested to counteract this energy bump behaviour by
explicit sub-grid scale modelling. However, the recent study by Fernandez et al. (2018) shows
that this topic is delicate and improvements in some quantities by the use of explicit sub-grid
models cause deviations in other quantities such as the temporal evolution of the kinetic energy
dissipation rate. In our opinion, the challenge lies in improving the spectral behaviour and at the710

same time not giving up the improved resolution capabilities (per degrees of freedom) of high-
order discretisations. The overall goal can be formulated as achieving a discretisation method
that is accurate w.r.t. both the spectral behaviour and the behaviour in physical space, e.g., the
temporal evolution of the kinetic energy and its dissipation rate. We want to note that from such a
holistic view it is not clear a priori whether an explicit sub-grid scale model optimizing the energy715

spectrum according to the inertial k−5/3 law is advantageous overall. We take up this point again
in the outlook in section 4 discussing possible directions of future research. The energy spectra
shown in (Schroeder 2019, figure 9.15) for an exactly energy-conserving discretisation scheme
illustrate that such a scheme leads to physical inconsistencies for the E(k)-curves in the inertial
range.720

3.4.4. Does the numerical dissipation have artificial or predictive character?
The dissipation of kinetic energy observed for the inviscid Taylor–Green simulations originates

from the numerical method. At first sight, onemight argue that changing the discretisation scheme
by choosing another numerical flux or varying certain parameters leads to results that are more
or less dissipative, i.e., that the amount of dissipation is artificial and is determined by the725

discretisation parameters. The results of the mesh convergence study shown above do not support
this point of view, and we want to provide further results that might allow insights into the
predictive character of these dissipative numerical solutions. In this context, it is illustrative
to study the temporal evolution of the kinetic energy and its dissipation rate under a variation
of parameters of the discretisation scheme. Figure 13 shows a parameters study of the penalty730

factor ζ of the divergence and continuity penalty terms of the present discretisation, considering
values of ζ = 1, 2, 4, 8 by the example of the 10243 spatial resolution. Note that this parameter is
the crucial one in stabilizing the method in the under-resolved and high-Reynolds regime (Fehn
et al. 2018b, 2019). We observe that the overall amount of dissipation as well as the dissipation
maximum are essentially unaltered by a variation of this parameter. It is worth noting that735

the time of onset of dissipation is also not affected by the value of ζ . This might have important
implications. Assuming that a non-dissipative (energy-conserving) solution is the correct physical
behaviour and that the numerical dissipation is artificial, one might expect that an increase of
the penalty parameter affects the numerical solution more strongly, e.g., changes the amount of
overall dissipation or leads to a delayed onset of dissipation due to a better fulfilment of the740

divergence-free constraint for example. As we do not observe such a behaviour, these results are
an indication that the obtained dissipative solutions have a predictive character in our opinion. It
is clear that we can not expect the results to be identical for different penalty factors, since the
results are not grid-converged for the chosen 10243 resolution, meaning that the discretisation
scheme and its parameters affect the numerical solution.745
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Figure 13: Three-dimensional inviscid Taylor–Green problem: variation of penalty
factor ζ and its influence on the temporal evolution of the kinetic energy (left) and the

kinetic energy dissipation rate (right) for effective resolution of 10243.

3.4.5. Are the results grid-converged?
We finally address the question whether and to which extent the results presented for inviscid

Taylor–Green simulations can be considered as grid-converged. For this purpose, we compute
relative L2-errors for the kinetic energy evolution and the kinetic energy dissipation rate

e2
E =

∫ T

t=0 (E(t) − Eref(t))2 dt∫ T

t=0 (Eref(t))2 dt
, e2

dE/dt =

∫ T

t=0

(
dE(t)

dt −
dEref (t)

dt

)2
dt∫ T

t=0

(
dEref (t)

dt

)2
dt

.

Since no analytical solution is available, the errors are measured using the finest resolution
of 81923 as a reference (ref). This implies that we can not compute the error for the 81923

resolution. The error of this simulation can only be roughly estimated by extrapolating the
convergence trend observed for the coarser resolutions and assuming that this convergence750

behaviour continues for the finest resolution. Defining a simulation with a relative error of 1%
or less as grid-converged, the results in figure 14 reveal that we achieve grid-convergence in
the kinetic energy evolution with errors below 1%. For the second finest resolution (the last
data point in figure 14), the measured error is 0.27%. For the kinetic energy dissipation rate,
the error is significantly larger, demonstrating that this quantity is more sensitive, in agreement755

with what has been observed in figure 1. For the second finest resolution, the measured error
is 3.52%. While the errors can be expected to be smaller for the finest resolution 81923 that is
used as a reference solution here, we conclude that even finer resolutions would be required to
achieve grid-convergence also for the kinetic energy dissipation rate in terms of the 1% error
level. Figure 14 also shows linear least-squares fits (e.g., log(E) ≈ a log(NDoFs)+ b for the kinetic760

energy) to the data obtained from the numerical experiments, where a mean converge rate of
approximately h3/4 is obtained for the kinetic energy and h1/2 for the dissipation rate. This result
– seemingly providing numerical evidence of grid-convergence to a dissipative solution of the
three-dimensional incompressible Euler equations under Taylor–Green initial conditions – is the
main result of the present study. While one might conjecture that this solution could be a weak765

Euler solution, there is currently no rigorous mathematical theory guaranteeing convergence to a
weak solution.Moreover, even if we in fact obtained convergence to aweak Euler solution, it might
not be the viscosity solution for ν → 0. Finally, from the results in figure 14 it can not be excluded
that the dissipation rate would (slowly) tend to zero in the limit h→ 0 if finer spatial resolutions
were realised. Let us explain this decisive aspect in more detail. For a solution that is non-770

dissipative (i.e., energy-conserving) from a physical perspective, one might argue that dissipation
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Figure 14: Three-dimensional inviscid Taylor–Green problem: relative L2-errors of the
temporal evolution of the kinetic energy (left) and the kinetic energy dissipation

rate (right) for effective resolutions ranging from 83 to 40963.

in the numerical simulation can only originate from under-resolution and can be expected to
tend to zero when increasing the resolution. However, a dissipation rate decreasing extremely
slowly under mesh refinement, e.g. as 1/log log(1/h), might then (erroneously) indicate grid-
convergence to a dissipative solution, although the true solution is actually energy-conserving.775

Against this background, our numerical investigations according to the indirect approach are
consistent with or suggestive of finite-time singularities, but do not conclusively provide evidence
of finite-time singularities.

4. Conclusion and outlook
Hunting for finite-time singularities in incompressible Euler flows is a challenging discipline.780

Searching for singular behaviour in visualisations of three-dimensional simulation results evokes
the picture of finding a needle in a haystack, as it can be expected that singularities are very
localised, will never be resolved by a numerical scheme, and the amount of data for large-scale
three-dimensional simulations soon becomes cumbersome. For this reason, most previous studies
focused on quantities such as the maximum vorticity, the analyticity strip width, fitting energy785

spectra to power law behaviour, and related blow-up criteria. The present work focuses on global
quantities such as the temporal evolution of the kinetic energy, avoiding geometrical complexities
in visualisation and striving for a clearer indication of singular behaviour given that it might
be computationally less demanding to resolve the kinetic energy than the vorticity in numerical
simulations. We call this approach indirect since it exploits the connection between singular790

behaviour and anomalous energy dissipation according to Onsager’s conjecture. A decisive point
is that this technique requires suitable discretisation schemes that remain robust in the presence
of singularities and provide mechanisms of dissipation in case no viscous dissipation is present,
which is a challenge in itself. Then, the idea is that observing an energy dissipating behaviour for
a sequence of mesh refinement levels provides insight into the physical dissipation behaviour of795

the problem under investigation.
We applied this technique to one-, two-, and three-dimensional problems. Results consistent

with theory have been obtained in one and two space dimensions. Subsequently, this technique
has been used to study the complex three-dimensional inviscid Taylor–Green problem, for
which an energy dissipating behaviour consistent with the high Reynolds number limit of800

viscous simulations available in the literature has been observed. The present study measures
grid-convergence to a dissipative, fine-resolution numerical solution for the three-dimensional
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inviscid Taylor–Green problem with a measured relative L2-error of 0.27% for the kinetic energy
and 3.52% for the kinetic energy dissipation rate. The results for the temporal evolution of the
kinetic energy might therefore be considered as grid-converged and serve as a reference solution805

for future studies. Regarding the temporal evolution of the maximum vorticity and the enstrophy,
we are able to resolve an increase of almost four orders of magnitude for both quantities. To the
best of our knowledge, these are the highest resolution results published to date for the three-
dimensional inviscid Taylor–Green vortex problem. Confidence is put into the reliability of the
numerical results for this challenging three-dimensional problem by the circumstance that the810

numerical method applied here is a robust discretisation scheme that remains numerically stable
in the inviscid limit for all spatial resolutions that have been investigated. This is an important
prerequisite to draw conclusions about a potential physical blow-up. In contrast, a numerical
simulation that blows up in finite time does not allow any conclusions, since the observed blow-
up is due to numerical instabilities. In other words, a physical blow-up does not imply a numerical815

blow-up for a finite-resolution numerical simulation.
In summary, this work wants to raise the questions (i) to which extent these results are related

to weak dissipative solutions of the incompressible Euler equations, (ii) to which extent these
results can then be interpreted as a numerical confirmation of the energy dissipation anomaly,
and (iii) whether these results would imply finite-time singularities according to Onsager’s820

conjecture. Let us emphasise that the present results do not formally prove convergence of
the discrete velocity fields uh to a weak Euler solution u. Even if convergence to a weak Euler
solution was obtained for a subsequence hj , another subsequence hk might converge to a different
weak Euler solution. Moreover, it can not be excluded that the observed “dissipation anomaly”
is of numerical origin in the sense that the spatial resolutions considered here might be too825

coarse to adequately resolve an energy-conserving Euler solution. Nevertheless, the present study
might complement theoretical and experimental works on anomalous energy dissipation and the
related implications on finite-time singularities for three-dimensional incompressible Euler flows
according to Onsager’s conjecture. As part of future work, the so-called 4/5th-law (Duchon &
Robert 2000) should be investigated numerically in order to substantiate the hypothesis of having830

found a dissipative anomaly. Finally, the present work would gain further theoretical support by
a proof of convergence to generalised weak Euler solutions for DG discretisation schemes of the
Euler equations in the limit h→ 0 (along subsequences).
Given the challenges of the proposed indirect approach, it appears to be natural to raise the

question whether this technique has advantages over well-known direct techniques. Let us share835

some ideas why the indirect approachmight be an attractive technique for the exploration of finite-
time singularities. A key motivation for the indirect approach is that it might not be necessary
to resolve the smallest scales of the flow in order to resolve the temporal evolution of the kinetic
energy. This is based on the observation that resolving the vorticity field (direct approach) typically
requires significantly finer resolutions than resolving the kinetic energy (indirect approach).When840

studying singularities by the direct approach, one needs to realise that resolving the smallest scales
is not possible for finite spatial resolutions. The vorticity will take finite† values at all times for
a stable discretisation scheme, so that results of a single simulation do not serve as numerical
evidence of a finite-time singularity. A key element of the indirect approach is a mesh refinement
studywhere the quantities of interest (kinetic energy and its dissipation rate) do not blow up. In our845

opinion, this circumstance supports cross-solver validation very naturally. Assume for example
that different spatial discretisation schemes would converge to the same dissipative, numerical
solution (measured by some error norms as done in the present work). A cross-solver validation of
the kinetic energy evolution or dissipation rate (indirect approach) might give confidence that the

† In this context, the term finite means that the quantity of interest takes values much smaller than the
“infinite” value defined by the maximum floating point number that can be represented on a computer.
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obtained dissipative behaviour is not artificial (why should entirely different PDE solvers produce850

“the same” artificial result with artificial dissipation?). On the contrary, it would be difficult for
each of these simulations to demonstrate a blow-up of vorticity in order to provide evidence of
finite-time singularities by direct techniques. All these solvers might show an increase in vorticity
by a large factor, but it is still not clear whether a finite-time singularity ‖ω‖∞ → ∞ occurs.
Of course, there is currently not sufficient data available in the literature to substantiate this855

assumption regarding a cross-solver validation of our results. One aspect that we want to initiate
with the present contribution is exactly such a cross-solver validation based on space-averaged
results or other suitable statistical results. In summary, the argument in favour of the indirect
approach would then be a clearer indication of finite-time singularities due to relaxed resolution
requirements as compared to the direct approach.860

Applicability of high-order DG discretisations to large-scale problems in turbulence research,
for which spectral methods are currently the state-of-the-art due to their accuracy and
computational efficiency, has been demonstrated. Finally, the present study gives indications
in terms of what a promising large-eddy simulation strategy might be, and contributes to the
long-lasting and difficult discussion on explicit versus implicit sub-grid scale models. High-order865

discretisations that can be described as implicit LES have shown very promising results for
moderate Reynolds number flows, but it is often argued that such techniques can be expected
to finally need explicit sub-grid scale modelling once they are applied in the limit Re → ∞.
The present work contributes to this discussion by investigating a high-order discontinuous
Galerkin discretisation without explicit model in the inviscid limit. Assuming that such an870

implicit approach gives physical results in the inviscid limit, e.g., consistent with Onsager’s
conjecture on anomalous energy dissipation, it makes one more confident that such a method
is able to naturally account for more complex physical mechanisms in turbulence beyond K41
theory (Dubrulle 2019). Taking as an alternative an energy-conserving numerical method with
explicit sub-grid scale model, the anomalous energy dissipation has to be realised by the sub-grid875

model. We therefore believe it is an interesting future research direction to take the results shown
in the present study for the inviscid Taylor–Green problem as a reference for further validation
or to perform comparative studies between explicit and implicit LES techniques for the highest
Reynolds number case, the inviscid limit.

880

Supplementary material. Reference data for the inviscid Taylor–Green vortex simulations
for resolutions of 20483, 40963, 81923 (kinetic energy) and 20483 (kinetic energy spectra) is
available as supplementary material.

Acknowledgements. The authors thank Gert Lube and Oliver Neumann for inspiring discussions885

on this topic. The authors also thank Marc Brachet and Samriddhi Sankar Ray for helpful
comments on a preprint of this work. We further appreciate contributions by Nisarg Patel
who provided the high-resolution visualization results for the inviscid Taylor–Green problem,
and support by the staff of the Leibniz Supercomputing Centre. Finally, contributions by the
developer communities of the ExaDG and deal.II software projects are gratefully acknowledged.890

Funding. The research presented in this paper was partly funded by the German Research
Foundation (DFG) under the project “High-order discontinuous Galerkin for the EXA-scale”
(ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), grant
agreement no. KR4661/2-1 and WA1521/18-1. The authors gratefully acknowledge the Gauss895

Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing
computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre
(LRZ, www.lrz.de) through project id pr83te.

Page 30 of 35

Cambridge University Press

Journal of Fluid Mechanics



31

Declaration of Interests. The authors report no conflict of interest.900

Author ORCID. N. Fehn, https://orcid.org/0000-0001-7693-692X; M. Kronbichler,
https://orcid.org/0000-0001-8406-835X; W. A. Wall, https://orcid.org/0000-0001-7419-3384

REFERENCES
Agafontsev, D. S., Kuznetsov, E. A. & Mailybaev, A. A. 2015 Development of high vorticity structures905

in incompressible 3D Euler equations. Physics of Fluids 27 (8), 085102.
Ainsworth, M. 2004 Dispersive and dissipative behaviour of high order discontinuous Galerkin finite

element methods. Journal of Computational Physics 198 (1), 106 – 130.
Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R., Heister,

T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B. & Wells,910

D. 2018 The deal.II library, version 9.0. J. Numer. Math. 26 (4), 173–184.
Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret,

J.-P., Turcksin, B. & Wells, D. 2021 The deal.II finite element library: Design, features, and
insights. Computers & Mathematics with Applications 81, 407–422.

Arndt, D., Fehn, N., Kanschat, G., Kormann, K., Kronbichler, M., Munch, P., Wall, W. A. & Witte,915

J. 2020 ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale. In Software for Exascale
Computing - SPPEXA 2016-2019 (ed. H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann & W. E.
Nagel), pp. 189–224. Cham: Springer International Publishing.

Beale, J. T., Kato, T. & Majda, A. 1984 Remarks on the breakdown of smooth solutions for the 3-D Euler
equations. Communications in Mathematical Physics 94 (1), 61–66.920

Boratav, O. N. & Pelz, R. B. 1994 Direct numerical simulation of transition to turbulence from a high-
symmetry initial condition. Physics of Fluids 6 (8), 2757–2784.

Brachet, M. E. 1991 Direct simulation of three-dimensional turbulence in the Taylor–Green vortex. Fluid
dynamics research 8 (1-4), 1–8.

Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale925

structure of the Taylor–Green vortex. Journal of Fluid Mechanics 130, 411–452.
Brachet, M. E., Meneguzzi, M., Vincent, A., Politano, H. & Sulem, P. L. 1992 Numerical evidence

of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal
flows. Physics of Fluids A: Fluid Dynamics 4 (12), 2845–2854.

Brenier, Y., De Lellis, C. & Székelyhidi, L. 2011 Weak-strong uniqueness for measure-valued solutions.930

Communications in mathematical physics 305 (2), 351–361.
Brenner, M. P., Hormoz, S. & Pumir, A. 2016 Potential singularity mechanism for the Euler equations.

Phys. Rev. Fluids 1, 084503.
Brown, D. L. 1995 Performance of under-resolved two-dimensional incompressible flow simulations.

Journal of Computational Physics 122 (1), 165 – 183.935

Buckmaster, T., De Lellis, C. & Székelyhidi Jr., L. 2016 Dissipative Euler flows with Onsager-critical
spatial regularity. Communications on Pure and Applied Mathematics 69 (9), 1613–1670.

Buckmaster, T., De Lellis, C., Székelyhidi Jr., L. & Vicol, V. 2018 Onsager's conjecture for admissible
weak solutions. Communications on Pure and Applied Mathematics 72 (2), 229–274.

Buckmaster, T., Masmoudi, N., Novack, M. & Vicol, V. 2021 Non-conservative H1/2− weak solutions940

of the incompressible 3D Euler equations. arXiv preprint arXiv:2101.09278 .
Buckmaster, T. & Vicol, V. 2019 Nonuniqueness of weak solutions to the Navier–Stokes equation. Annals

of mathematics 189 (1), 101–144.
Buckmaster, T. & Vicol, V. 2020 Convex integration and phenomenologies in turbulence. EMS Surveys

in Mathematical Sciences 6 (1), 173–263.945

Burgers, J.M. 1948 A mathematical model illustrating the theory of turbulence. Advances in Applied
Mechanics, vol. 1, pp. 171 – 199. Elsevier.

Bustamante, M. D. & Brachet, M. 2012 Interplay between the Beale–Kato–Majda theorem and the
analyticity-strip method to investigate numerically the incompressible Euler singularity problem.
Phys. Rev. E 86, 066302.950

Campolina, C. S. & Mailybaev, A. A. 2018 Chaotic blowup in the 3D incompressible Euler equations on
a logarithmic lattice. Phys. Rev. Lett. 121, 064501.

Page 31 of 35

Cambridge University Press

Journal of Fluid Mechanics



32

Chalmers, N., Agbaglah, G., Chrust, M. & Mavriplis, C. 2019 A parallel hp-adaptive high
order discontinuous Galerkin method for the incompressible Navier–Stokes equations. Journal of
Computational Physics: X 2, 100023.955

Chapelier, J.-B., De La Llave Plata, M. & Renac, F. 2012 Inviscid and viscous simulations of the Taylor–
Green vortex flow using a modal discontinuous Galerkin approach. In 42nd AIAA Fluid Dynamics
Conference and Exhibit, p. 3073.

Cheskidov, A., Constantin, P., Friedlander, S. & Shvydkoy, R. 2008 Energy conservation andOnsager's
conjecture for the Euler equations. Nonlinearity 21 (6), 1233–1252.960

Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M. 2005 Effective dissipation and turbulence in
spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502.

Cichowlas, C. & Brachet, M.-E. 2005 Evolution of complex singularities in Kida–Pelz and Taylor–Green
inviscid flows. Fluid Dynamics Research 36 (4-6), 239–248.

Constantin, P., E, W. & Titi, E. S. 1994 Onsager’s conjecture on the energy conservation for solutions of965

Euler’s equation. Communications in Mathematical Physics 165 (1), 207.
Coppola, G., Capuano, F. & de Luca, L. 2019 Discrete Energy-Conservation Properties in the Numerical

Simulation of the Navier–Stokes Equations. Applied Mechanics Reviews 71 (1), 010803.
Daneri, S., Runa, E. & Székelyhidi, L. 2021 Non-uniqueness for the Euler equations up to Onsager’s

critical exponent. Annals of PDE 7 (1), 1–44.970

De Lellis, C. & Székelyhidi Jr., L. 2013 Dissipative continuous Euler flows. Inventiones mathematicae
193 (2), 377–407.

De Lellis, C. & Székelyhidi Jr., L. 2014 Dissipative Euler flows and Onsager’s conjecture. Journal of the
European Mathematical Society 16 (7), 1467–1505.

DiPerna, R. J. & Majda, A. J. 1987 Oscillations and concentrations in weak solutions of the incompressible975

fluid equations. Communications in mathematical physics 108 (4), 667–689.
Drivas, T. D. & Eyink, G. L. 2019 An onsager singularity theorem for leray solutions of incompressible

Navier–Stokes. Nonlinearity 32 (11), 4465.
Drivas, T. D. & Nguyen, H. Q. 2019 Remarks on the emergence of weak Euler solutions in the vanishing

viscosity limit. Journal of Nonlinear Science 29 (2), 709–721.980

Dubrulle, B. 2019 Beyond Kolmogorov cascades. Journal of Fluid Mechanics 867, P1.
Duchon, J. & Robert, R. 2000 Inertial energy dissipation for weak solutions of incompressible Euler and

Navier–Stokes equations. Nonlinearity 13 (1), 249–255.
Eggers, J. 2018 Role of singularities in hydrodynamics. Phys. Rev. Fluids 3, 110503.
Eyink, G. L. 1994 Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local985

energy transfer. Physica D: Nonlinear Phenomena 78 (3), 222 – 240.
Eyink, G. L. 2008Dissipative anomalies in singular Euler flows.PhysicaD: Nonlinear Phenomena 237 (14),

1956 – 1968, euler Equations: 250 Years On.
Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod.

Phys. 78, 87–135.990

Fehn, N., Heinz, J., Wall, W. A. & Kronbichler, M. 2021 High-order arbitrary Lagrangian–Eulerian
discontinuous Galerkin methods for the incompressible Navier–Stokes equations. Journal of
Computational Physics 430, 110040.

Fehn, N., Kronbichler, M., Lehrenfeld, C., Lube, G. & Schroeder, P. W. 2019 High-order DG solvers
for under-resolved turbulent incompressible flows: A comparison of L2 and H(div) methods. Int. J.995

Numer. Meth. Fluids 91 (11), 533–556.
Fehn, N., Munch, P., Wall, W. A. & Kronbichler, M. 2020 Hybrid multigrid methods for high-order

discontinuous Galerkin discretizations. Journal of Computational Physics 415, 109538.
Fehn, N., Wall, W. A. & Kronbichler, M. 2017 On the stability of projection methods for the

incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations.1000

Journal of Computational Physics 351, 392–421.
Fehn, N., Wall, W. A. & Kronbichler, M. 2018a Efficiency of high-performance discontinuous Galerkin

spectral element methods for under-resolved turbulent incompressible flows. Int. J. Numer. Meth.
Fluids 88 (1), 32–54.

Fehn, N., Wall, W. A. & Kronbichler, M. 2018b Robust and efficient discontinuous Galerkin methods1005

for under-resolved turbulent incompressible flows. J. Comput. Phys. 372, 667–693.
Fernandez, P., Nguyen, N. C. & Peraire, J. 2018 On the ability of discontinuous Galerkin methods to

simulate under-resolved turbulent flows. arXiv preprint arXiv:1810.09435 .

Page 32 of 35

Cambridge University Press

Journal of Fluid Mechanics



33

Fischer, P. & Mullen, J. 2001 Filter-based stabilization of spectral element methods. Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics 332 (3), 265 – 270.1010

Flad, D. & Gassner, G. 2017On the use of kinetic energy preservingDG-schemes for large eddy simulation.
Journal of Computational Physics 350, 782 – 795.

Frigo, M. & Johnson, S. G. 2005 The Design and Implementation of FFTW3. Proceedings of the IEEE
93 (2), 216–231.

Fu, G. 2019 An explicit divergence-free DG method for incompressible flow. Computer Methods in Applied1015

Mechanics and Engineering 345, 502 – 517.
Gibbon, J. D. 2008 The three-dimensional Euler equations: Where do we stand? Physica D: Nonlinear

Phenomena 237 (14), 1894 – 1904, euler Equations: 250 Years On.
Grafke, T., Homann, H., Dreher, J. & Grauer, R. 2008 Numerical simulations of possible finite time

singularities in the incompressible Euler equations: Comparison of numerical methods. Physica D:1020

Nonlinear Phenomena 237 (14), 1932 – 1936, euler Equations: 250 Years On.
Grauer, R., Marliani, C. & Germaschewski, K. 1998 Adaptive mesh refinement for singular solutions

of the incompressible Euler equations. Phys. Rev. Lett. 80, 4177–4180.
Guzmán, J., Shu, C.-W. & Sequeira, F. A. 2016 H(div) conforming and DG methods for incompressible

Euler’s equations. IMA Journal of Numerical Analysis 37 (4), 1733–1771.1025

Hou, T. Y. & Li, R. 2008 Blowup or no blowup? The interplay between theory and numerics. Physica D:
Nonlinear Phenomena 237 (14), 1937 – 1944, euler Equations: 250 Years On.

Isett, P. 2017 Nonuniqueness and existence of continuous, globally dissipative Euler flows. arXiv preprint
arXiv:1710.11186 .

Isett, P. 2018 A proof of Onsager’s conjecture. Annals of Mathematics 188 (3), 871–963.1030

Josserand, C., Pomeau, Y. & Rica, S. 2020 Finite-time localized singularities as a mechanism for turbulent
dissipation. Phys. Rev. Fluids 5, 054607.

Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy
spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of
Fluids 15 (2), L21–L24.1035

Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible
Navier–Stokes equations. J. Comput. Phys. 97 (2), 414 – 443.

Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp element methods for computational fluid dynamics,
2nd edn. Oxford University Press.

Kerr, R. M. 1993 Evidence for a singularity of the three-dimensional, incompressible Euler equations.1040

Physics of Fluids A: Fluid Dynamics 5 (7), 1725–1746.
Kerr, R. M. 2013 Bounds for Euler from vorticity moments and line divergence. Journal of FluidMechanics

729, R2.
Kerr, R. M. & Hussain, F. 1989 Simulation of vortex reconnection. Physica D: Nonlinear Phenomena

37 (1), 474 – 484.1045

Kida, S. 1985 Three-dimensional periodic flows with high-symmetry. Journal of the Physical Society of
Japan 54 (6), 2132–2136.

Kolmogorov, A. N. 1991 The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers. Proceedings of the Royal Society of London. Series A:Mathematical and Physical
Sciences 434 (1890), 9–13.1050

Krais, Nico, Schnücke, Gero, Bolemann, Thomas & Gassner, Gregor J. 2020 Split form ALE
discontinuous Galerkin methods with applications to under-resolved turbulent low-Mach number
flows. Journal of Computational Physics 421, 109726.

Krank, B., Fehn, N., Wall, W. A. & Kronbichler, M. 2017 A high-order semi-explicit discontinuous
Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel1055

flow. J. Comput. Phys. 348, 634–659.
Kronbichler, M. & Kormann, K. 2019 Fastmatrix-free evaluation of discontinuousGalerkin finite element

operators. ACM Trans. Math. Softw. 45 (3), 29:1–29:40.
Kuzzay, D., Saw, E.-W., Martins, F.J.W.A., Faranda, D., Foucaut, J.-M., Daviaud, F. & Dubrulle,

B. 2017 New method for detecting singularities in experimental incompressible flows. Nonlinearity1060

30 (6), 2381.
Lamballais, E., Dairay, T., Laizet, S. & Vassilicos, J. C. 2019 Implicit/explicit spectral viscosity

and large-scale SGS effects. In Direct and Large-Eddy Simulation XI (ed. Maria Vittoria Salvetti,
Vincenzo Armenio, Jochen Fröhlich, Bernard J. Geurts & Hans Kuerten), pp. 107–113. Cham:
Springer International Publishing.1065

Page 33 of 35

Cambridge University Press

Journal of Fluid Mechanics



34

Larios, A., Petersen, M. R., Titi, E. S. & Wingate, B. 2018 A computational investigation of the finite-
time blow-up of the 3D incompressible Euler equations based on the Voigt regularization. Theoretical
and Computational Fluid Dynamics 32 (1), 23–34.

Lions, P.-L. 1996 Mathematical Topics in Fluid Mechanics. Volume 1: Incompressible Models. Volume 3
of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press.1070

Luo, G. & Hou, T. Y. 2014 Potentially singular solutions of the 3D axisymmetric Euler equations.
Proceedings of the National Academy of Sciences 111 (36), 12968–12973.

Manzanero, J., Ferrer, E., Rubio, G. & Valero, E. 2020 Design of a Smagorinsky spectral vanishing
viscosity turbulence model for discontinuous Galerkin methods. Computers & Fluids 200, 104440.

McKeown, Ryan, Ostilla-Mónico, Rodolfo, Pumir, Alain, Brenner, Michael P. & Rubinstein,1075

Shmuel M. 2018 Cascade leading to the emergence of small structures in vortex ring collisions.
Phys. Rev. Fluids 3, 124702.

Moffatt, H. K. 2019 Singularities in fluid mechanics. Phys. Rev. Fluids 4, 110502.
Morf, R. H., Orszag, S. A. & Frisch, U. 1980 Spontaneous singularity in three-dimensional inviscid,

incompressible flow. Phys. Rev. Lett. 44, 572–575.1080

Moura, R., Mengaldo, G., Peiró, J. & Sherwin, S. 2017aAn LES setting for DG-based implicit LES with
insights on dissipation and robustness. In Spectral and High Order Methods for Partial Differential
Equations. Springer.

Moura, R.C., Mengaldo, G., Peiró, J. & Sherwin, S.J. 2017b On the eddy-resolving capability of high-
order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence.1085

Journal of Computational Physics 330, 615 – 623.
Murugan, S. D., Frisch, U., Nazarenko, S., Besse, N. & Ray, S. S. 2020 Suppressing thermalization

and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the
Burgers equation. Phys. Rev. Research 2, 033202.

Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento (1943-1954) 6, 279–287.1090

Orlandi, P. 2009 Energy spectra power laws and structures. Journal of Fluid Mechanics 623, 353–374.
Orlandi, P., Pirozzoli, S. & Carnevale, G. F. 2012 Vortex events in Euler and Navier–Stokes simulations

with smooth initial conditions. Journal of Fluid Mechanics 690, 288–320.
Pearson, B. R., Krogstad, P.-Å. & van de Water, W. 2002 Measurements of the turbulent energy

dissipation rate. Physics of Fluids 14 (3), 1288–1290.1095

Pelz, R. B. 2001 Symmetry and the hydrodynamic blow-up problem. Journal of Fluid Mechanics 444,
299–320.

Pelz, R. B. & Gulak, Y. 1997 Evidence for a real-time singularity in hydrodynamics from time series
analysis. Phys. Rev. Lett. 79, 4998–5001.

Piatkowski, S.-M. 2019A spectral discontinuousGalerkinmethod for incompressible flowwith applications1100

to turbulence. PhD thesis, Ruprecht-Karls-Universität Heidelberg.
Ray, S. S., Frisch, U., Nazarenko, S. & Matsumoto, T. 2011 Resonance phenomenon for the Galerkin-

truncated Burgers and Euler equations. Phys. Rev. E 84, 016301.
Saw, E.-W., Kuzzay, D., Faranda, D., Guittonneau, A., Daviaud, F., Wiertel-Gasquet, C., Padilla,

V. & Dubrulle, B. 2016 Experimental characterization of extreme events of inertial dissipation in a1105

turbulent swirling flow. Nature communications 7, 12466.
Schroeder, P. W. 2019 Robustness of high-order divergence-free finite element methods for incompressible

computational fluid dynamics. PhD thesis, Georg-August-Universität Göttingen.
Schroeder, P. W. & Lube, G. 2018 Divergence-free H(div)-FEM for time-dependent incompressible flows

with applications to high Reynolds number vortex dynamics. Journal of Scientific Computing 75 (2),1110

830–858.
Shu, C.-W., Don, W.-S., Gottlieb, D., Schilling, O. & Jameson, L. 2005 Numerical convergence study

of nearly incompressible, inviscid Taylor–Green vortex flow. Journal of Scientific Computing 24 (1),
1–27.

Sreenivasan, K. R. 1998 An update on the energy dissipation rate in isotropic turbulence. Physics of Fluids1115

10 (2), 528–529.
Sulem, C., Sulem, P. L. & Frisch, H. 1983 Tracing complex singularities with spectral methods. Journal

of Computational Physics 50 (1), 138 – 161.
Taylor, G. I. 1935 Statistical theory of turbulence. Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences 151 (873), 421–444.1120

Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones.

Page 34 of 35

Cambridge University Press

Journal of Fluid Mechanics



35

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 158 (895),
499–521.

Thalabard, S., Bec, J. & Mailybaev, A. A. 2020 From the butterfly effect to spontaneous stochasticity in
singular shear flows. Communications Physics 3 (1), 1–8.1125

Wiedemann, Emil 2017 Weak-strong uniqueness in fluid dynamics. arXiv preprint arXiv:1705.04220 .
Winters, A. R., Moura, R. C., Mengaldo, G., Gassner, G. J., Walch, S., Peiro, J. & Sherwin, S. J.

2018 A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes
for under-resolved turbulence computations. Journal of Computational Physics 372, 1 – 21.

Page 35 of 35

Cambridge University Press

Journal of Fluid Mechanics


