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1 Overview
deal.II version 9.3.0 was released June 17, 2021. This paper provides an overview of the new features of
this release and serves as a citable reference for the deal.II software library version 9.3. deal.II is an
object-oriented finite element library used around the world in the development of finite element solvers.
It is available for free under the GNU Lesser General Public License (LGPL). Downloads are available at
https://www.dealii.org/ and https://github.com/dealii/dealii.

The major changes of this release are:
– Experimental support for simplex and mixed meshes (see Section 2.1);
– Improved flexibility of the particle infrastructure (see Section 2.2);
– Support for global-coarsening multigrid algorithms (see Section 2.3);
– Advances in the matrix-free infrastructure (see Section 2.4);
– Usage of MPI-3.0 shared-memory features to reduce memory footprint (see Section 2.5);
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– Improved support for evaluation and integration at arbitrary points (see Section 2.6);
– Simplified implementation for face integrals (see Section 2.7);
– Nine new tutorial programs and a new code gallery program (see Section 2.9).

In addition, we discuss the candi installation program in Section 2.8.
While all of these major changes are discussed in detail in Section 2, there are a number of other note-

worthy changes in the current deal.II release that we briefly outline in the remainder of this section:
– Each non-artificial cell now has a globally unique index that can be queried for active cells via

CellAccessor::global_active_cell_index()

and for level cells via ::global_level_cell_index(). The information can be used to efficiently index
into global vectors storing data for each cell, rather than for each degree of freedom corresponding to a
finite element field.

– Previously, functions and classes were marked using the macro DEAL_II_DEPRECATED and then typically
removed in the release after the one in which these deprecation notices were available to users. We have
now extended this policy by introducing the DEAL_II_DEPRECATED_EARLY macro, which indicates that a
feature will be deprecated in the next release. In contrast to the first macro, it will only give warnings if
deal.II has been configured with -D DEAL_II_EARLY_DEPRECATIONS=ON.

– After each update of the master branch of deal.II, we build a new Docker image with all features en-
abled. It is accessible on Docker Hub via dealii/dealii:master-focal. This image is particular useful
when used in the continuous-integration processes of user codes.

– A long-standingorientation issue for the vector valuedfinite element FE_RaviartThomas<3>was resolved.
This issue prevented the user from using this class on meshes with cells that do not have standard orien-
tation, i.e., cells that have faces that are reflected and/or rotated relative to their neighbors. In all eight
possible neighboring configurations, we can now guarantee that the necessary H(div)-conformity con-
dition is met for all polynomial orders. This is verified through a new conformity test on non-standard
meshes.

– deal.II now requires compilers to support the C++14 standard [38].

The changelog lists more than 200 other features and bugfixes.

2 Major changes to the library
This release of deal.II contains a number of large and significant changes that will be discussed in this
section. It of course also contains a vast number of smaller changes and added functionality; the details of
these can be found in the file that lists all changes for this release; see [47].

2.1 Experimental simplex and mixed mesh support

The current release of deal.II adds experimental support for simplex meshes (consisting of triangles in 2D;
tetrahedra in 3D) and mixed meshes (consisting of triangles and/or quadrilaterals in 2D; tetrahedra, pyra-
mids, wedges, and/or hexahedra in 3D). Many freely available mesh-generation tools produce such kind of
meshes and they are widely used in industry and applications, but were previously unsupported by deal.II.
As a consequence, users of deal.II had to pre-process such meshes and convert them to pure quadrilateral
or hexahedral meshes.

Support for simplex and mixed meshes is not universal in deal.II at this point. While deal.II can read
suchmeshes,write output for them, and solve partial differential equationswith certain finite elements, there
are alsomany areas that have not been fully adapted to the new functionality. In particular, deal.II currently
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Fig. 1: Reference cells in 2D (triangle, quadrilateral) and 3D (tetrahedron, pyramid, wedge, hexahedron) with the support points
indicated both for linear ( ∙ ) and quadratic (×) shape functions.
Tab. 1: List of new scalar FiniteElement classes for the new reference-cell types. Vectorial elements can be constructed based
on these classes via FE_Systems.

reference cell finite element dimension degree

simplex (line, triangle, tetrahedron) FE_SimplexP, FE_SimplexDGP 1–3 1–2
FE_SimplexP_Bubbles 1–3 1–2

pyramid FE_PyramidP, FE_PyramidDGP 3 1
wedge FE_WedgeP, FE_WedgeDGP 3 1–2

only offers low-order finite elements on such meshes, and many utility functions might throw exceptions
when used with such meshes.

A user-focused summary of information around simplex andmixedmesh support is also available on the
new module page at https://www.dealii.org/current/doxygen/deal.II/group__simplex.html. In particular, it
shows how to solve a simple Poisson problem like in the step-3 tutorial program on simplex and mixed
meshes, with a focus on the necessary changes to the workflow. At the time of this release, there are also
92 tests (in the folder tests/simplex) targeting the new simplex and mixed mesh support. In particular, the
folder also contains ported variants of a number of existing tutorials: 1, 2, 3, 4, 6, 7, 8, 12, 17, 18, 20, 23, 31, 38,
40, 55, 67, 68, and 74.

2.1.1 Refactoring of internal data structures

To enable simplex andmixedmesh support, we performed amajor refactoring of the internal data structures
of deal.II. In particular, the Triangulation class and the DoFHandler class have undergone large changes
and now support meshes composed of all of the cells shown in Fig. 1.

The template parameters of the internal data structures of Triangulation have been removed and the
type of each cell and of each face (in 3D) is stored. The function Triangulation::create_triangulation(),
which converts a given list of cells and vertices to the internal data structures, has been rewritten inspired
by [48] and this has had the side effect of a speed-up of up to a factor of 5. Minor adjustments have also
been made to the parallel::shared::Triangulation and parallel::fullydistributed::Triangulation

classes such that the new mesh types can also be used in parallel.
The internal data structures of DoFHandler used to be hard-coded for pure hypercube meshes, while the

hp::DoFHandler used to be built around CRS-like data structures. Due to the need of CRS data structures in
the DoFHandler in the context of more general meshes, we havemerged hp::DoFHandler into the DoFHandler.
The class hp::DoFHandler, which is now a dummy derivation of DoFHandler, currently only exists for com-
patibility reasons and has been deprecated, see Section 2.10. It will be removed in the next release.
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2.1.2 Generating meshes

The most obvious way to generate a simplex or a mixed mesh is to read the mesh from a file generated by
an external mesh generator. Currently, we support the VTK, MSH (generated by the GMSH program [27]), and
EXODUS II file formats.

Alternatively, one can create a pure hypercubemeshwith the functions in the GridGenerator namespace
and convert it to a pure simplex mesh with the function GridGenerator::convert_hypercube_to_simplex_

mesh().

2.1.3 Using simplex meshes

After creating a triangulation, one can proceed in the same way as for hypercube meshes. In particular, one
selects an appropriate finite element, mapping, and quadrature class as follows:

C++ code

FE_SimplexP<dim, spacedim> fe(degree);

MappingFE<dim, spacedim> mapping(FE_SimplexP<dim, spacedim>(1));

QGaussSimplex<dim> quadrature(degree +1);

DoFHandler<dim, spacedim> dof_handler(tria);

dof_handler.distribute_dofs(fe);

FEValues<dim, spacedim> fe_values(mapping, fe, quadrature, flags);

The list of currently supported finite element classes is provided in Table 1. Currently, only linear and
quadratic mappings via the MappingFE and MappingFEField classes built around the listed nodal elements
are available. For quadrature, the classes QDuffy, QGaussSimplex, QWitherdenVincentSimplex [58, 65],
QGaussPyamid, and QGaussWedge are available.

2.1.4 Using mixed meshes

For mixed meshes, concepts known from the hp-context have been applied: different finite element classes
are assigned to different cells based on their respective kind of reference cell. In the case of a 2D mixed
mesh, which can only consist of triangles and quadrilaterals, the finite element defined on a triangle (e.g.,
FE_SimplexP) and on a quadrilateral (e.g., FE_Q) can be collected in a hp::FECollection as follows:

C++ code

hp::FECollection<dim, spacedim> fe

{FE_SimplexP<dim, spacedim>(degree), FE_Q<dim, spacedim>(degree)};

Similarly, hp::QCollection and hp::MappingCollection can be used to construct appropriate collec-
tions. Furthermore, the correct active finite element index, which points to the correct finite element of that
cell, has to be assigned to each cell. The following piece of code will then correctly enumerate all degrees of
freedom on the mesh:

C++ code

DoFHandler<dim> dof_handler(tria);

for (const auto &cell :dof_handler.active_cell_iterators())

switch (cell->reference_cell_type())

{

case ReferenceCell::Type::Tri: cell->set_active_fe_index(0); break;
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case ReferenceCell::Type::Quad: cell->set_active_fe_index(1); break;

// 3D (Tet, Pyramid, Wedge, Hex) not shown

default: Assert(false, ExcNotImplemented());

}

dof_handler.distribute_dofs(fe);

2.1.5 Practical implications

The introduction of simplex andmixedmeshes leads to some implications for the user if these features are to
be used. For instance, each cell might have a different type with different number of vertices, lines, and faces
so that these quantities can no longer be compile-time constants. This information used to be queried from
the GeometryInfo class. Instead,wehave extended relevant classes, e.g., TriaAccessoror TriaCellAccessor,
with useful new functions like n_vertices(), n_lines(), or n_faces() so that users can simply write:

C++ code

for (const auto &cell :tria.active_cell_iterators())

for (unsigned int f =0; f <cell->n_faces(); ++f)

// do something with cell->face(f);

Alternatively, one canuse an iterator-based approach to loopover all faces of a cell, introduced in the previous
release. The relevant functions have been adjusted to be able to deal with the now variable number of faces
per cell:

C++ code

for (const auto &cell :tria.active_cell_iterators())

for (const auto &face :cell->face_iterators())

// do something with face

Furthermore, for mixed meshes, the number of degrees of freedom will differ between cells so that cell-local
arrays need to be resized for each cell (as has previously already been the case in the hp-context):

C++ code

Vector<double> local_rhs;

for (const auto &cell :dof_handler.active_cell_iterators())

{

hp_fe_values.reinit(cell);

local_rhs.reinit(cell->get_fe().n_dofs_per_cell());

// ...

}

What is true for cells is also true for faces in 3D: faces can be either triangles or quadrilaterals. This is
the case even if no mixed mesh is used if the mesh consists exclusively of pyramids or wedges. As a con-
sequence, some functions, e.g., FiniteElementData::n_dofs_per_face(), have been extended with a new
optional argument for the face number.

Geometric information about cells and faces — previously provided by the GeometryInfo class for
hypercube-type cells — is now available via the ReferenceCell class that is defined for each of the seven
possible reference cells. The correct ReferenceCell for a cell or face can be obtained, respectively, us-
ing cell->reference_cell(), and either cell->face(f)->reference_cell() or cell->reference_cell().
face_reference_cell(f).

Furthermore, many functions in deal.II used mappings that, when not given explicitly, defaulted to
(bi-/tri-)linear ones. These no longer work for simplex or mixed meshes, so users will need to explicitly pro-
vide the correct mapping for the mesh to be used.
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2.1.6 Matrix-free support

deal.II’s matrix-free support has also been extended to simplex andmixedmeshes, for both continuous and
discontinuous elements. From a user perspective, the main changes are to pass a d-dimensional quadrature
object (rather than one for 1D), and the fact that FEEvaluation and FEFaceEvaluation must not specify the
polynomial degree via template arguments, determining all informationat runtime.Moredetails canbe found
in Section 2.4.

For the current release, no advanced algorithms for evaluating values and gradients at quadrature points,
such as sum factorization, are used. The use of full interpolation matrices is for now acceptable since only
low-order elements are supported.

2.2 Advances in the particle infrastructure

deal.II’s particle infrastructure has been modernized to store nearly all particle data as a collection of con-
tinuous data arrays instead of a container of objects. This reorganization improves cache efficiency when
iterating over particles and reduces the amount of data that needs to be moved when a particle moves to a
different cell. Keeping track of unused data slots allows to reuse them for new particles, significantly reduc-
ing memory allocations when particles are created after other particles have left the local domain. The data
arrays are rebuilt and sorted during every mesh refinement cycle.

Additionally, the particle infrastructure now supports a faster search algorithm for particles that moved
farther than one cell width between particle sorting operations, and support for updating ghost particles
(particles that live in ghost cells around the local domain) by updating their properties instead of destroying
and rebuilding their container has been added. The latter step improves the efficiency of ghost particle ex-
change significantly. With this feature, deal.II can be used for scalable parallel Lagrangian models such as
the Discrete Element Method (DEM) [30] or Molecular Dynamics.

Finally, the Particles::DataOut class now supports writing particle properties as vectors or tensors in-
stead of a collection of scalars if the properties are marked as such.

2.3 Advances in the multigrid infrastructure

Until now, deal.II has only supported ‘local smoothing’ multigrid algorithms [18] wherein smoothers only
act on the cells of a given refinement level, skipping those parts of the mesh that have not been adaptively
refined to that level. This approach guarantees that the work done summed up over all levels is proportional
to the number of unknowns, and is consequently necessary so that the overall multigrid preconditioner can
have a complexity of O(N).

In contrast, the current release now also supports ‘global coarsening’ algorithms [14, 60] when using
continuous (FE_Q, FE_SimplexP) and discontinuous (FE_DGQ, FE_SimplexDGP) elements. Global coarsening
builds multigrid levels for the entire domain, coarsening all cells of a triangulation regardless of how many
times they have been refined. In addition, the framework now available in deal.II is not only applicable
to geometric coarsening, but can also perform coarsening by reducing the polynomial degree (p-multigrid,
see [24]), for example to support hp-adaptive meshes. Finally, the implementation also supports transfer
between continuous and discontinuous elements as a further way to create multigrid levels.

These newmultigrid variants promise fewer solver iterations and better parallel scalability than the exist-
ing local smoothing algorithms, but have to deal with hanging nodes within each level and generally require
more computational work per iteration overall.

The transfer operators between two levels have been implemented in the new class MGTwoLevelTransfer,
which can be set up via the functions MGTwoLevelTransfer::reinit_geometric_transfer() or MGTwo

LevelTransfer::reinit_polynomial_transfer() for given DoFHandler and AffineConstraints objects
corresponding to the two levels. The resulting transfer operators can then be collected in a single MGTransfer
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GlobalCoarsening object that can be used just as the previous workhorse MGTransferMatrixFree within
the Multigrid algorithm. To facilitate the construction of matrix diagonals with matrix-free methods as
well as a matrix representation of the coarse level matrix, new utility functions create_diagonal() and
create_matrix() have been added to the MatrixFreeTools namespace (see also Subsection 2.4).

The usage of the new transfer operators (and of some of the utility functions) in the context of a hybrid
multigrid algorithm (hp-multigrid with algebraic multigrid as coarse-grid solver) for hp-problems is demon-
strated in the new tutorial step-75, see also Section 2.9.

2.4 Advances in the matrix-free infrastructure

deal.II’smatrix-free framework enableshigh-throughput operations for applications inwhichonly the avail-
ability of the action of a matrix, but not the entries of the matrix, are necessary. This framework has been
substantially extended in the current release.

2.4.1 Precompilation of evaluation kernels

Both the FEEvaluation and FEFaceEvaluation classes use template parameters for the polynomial degree of
the finite element k and the number of the 1D quadrature points q to generate near-optimal code for these
operations. For application codes that rely on operators of many different degrees (e.g., because they use
p-multigrid or hp-algorithms), creating all instantiations canbe overly complex and incur long compile times.

In the current release, specializations of these classes that do not rely on the template parameters k and q
(expressed in the code using special values ‘−1’ and ‘0’) have been added. For example:

C++ code

FEEvaluation<dim, -1, 0, n_components, Number, VectorizedArrayType>

phi(range, dofhandler_index, quadrature_index, first_selected_component);

These classes select at runtime— for common low andmediumpolynomial degree/quadrature combinations
(k ⩽ 6 and q ∈ {k+1, k+2, ⌊(3k)/2⌋}) — efficient precompiled implementations and default to non-templated
evaluation kernels otherwise (see also FEEvaluation::fast_evaluation_supported()).

In the case that even higher polynomial degrees are needed (e.g., k ⩽ 12), one can precompile the rel-
evant internal classes (FEEvaluationFactory, FEFaceEvaluationFactory, CellwiseInverseMassFactory) in
the user code for needed degrees and VectorizedArrayTypes in the following way:

C++ code

#define FE_EVAL_FACTORY_DEGREE_MAX 12

#include <deal.II/matrix_free/evaluation_template_factory.templates.h>

DEAL_II_NAMESPACE_OPEN

template struct dealii::internal::FEEvaluationFactory

<dim, VectorizedArrayType::value_type, VectorizedArrayType>;

// same for FEFaceEvaluationFactory and CellwiseInverseMassFactory (skipped)

DEAL_II_NAMESPACE_CLOSE

2.4.2 Parallel matrix-free hp-implementation

In release 9.1, large parts of the hp-algorithms in deal.II were ported to a model that allows for parallel
matrix-based simulations [6]. In the present release, the parallel hp support was extended to MatrixFree.
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Until now, the FEEvaluation classes used the template parameters k and q to select the correct active FE
and quadrature index and users were responsible for the cumbersome detection of subranges of the same k
and q within the cell ranges returned by the matrix-free loops. The creation of subranges is now performed
internally, and the non-templated versions of the FEEvaluation classes have been extended for the hp-case.
To determine the desired FE and quadrature index of a subrange, the current cell/face range has to be pro-
vided to the constructors of the FEEvaluation classes. These changes enable users to write matrix-free code
independently of whether hp-capabilities are used or not.

The new tutorial step-75 presents how to use the new hp-related features in MatrixFree in the context
of a hybrid-multigrid solver.

2.5 MPI-3.0 shared-memory support

Inmany large computations, certain pieces of data are computed (or read from disk) once and then treated as
read-only. If this information is needed bymore than oneMPI process, it ismore efficient to store this informa-
tion only once in sharedmemory among all processes located on amulticore node. MPI supports the creation
of such shared memory windows since version 3.0, and deal.II can now use this in the AlignedVector and
Table classes that are oftenused for large lookup tables for classes suchas InterpolatedTensorProductGridData.

Shared memory storage is also used in the MatrixFree and LinearAlgebra::distributed::Vector

classes. If MatrixFree has been configured by setting MatrixFree::AdditionalData::communicator_sm

appropriately, then MatrixFree::create_dof_vector() creates vectors that share information among all
processes on one node. As a consequence, the FEEvaluation classes can access vector elements owned
by other processes and node-local communication can be skipped in certain cases. To prevent race con-
ditions, MatrixFree uses local barriers at the beginning and the end of loops (loop(), cell_loop(), and
loop_cell_centric()).

The new step-76 tutorial program illustrates this case in the context of the solution of the Euler equa-
tions. It reaches a speed-up of 27% compared to the original version, step-67, by using the new feature. For
more details and the usage of the feature in the library hyper.deal, see [52].

2.6 Evaluation and integration at arbitrary points

In a number of circumstances, finite element solutions need to be evaluated at arbitrary reference points that
change from one element to the next. Two important examples are particle simulations coupled to a finite
element solution, or algorithms on non-matching grids. The existing FEValues class is a poor fit for this task,
as it is based on the assumption that evaluation of shape functions and their derivatives happens at the same
quadrature points on every cell, and that consequently expensive computations can be done once and results
re-used for many subsequent cells. The new class FEPointEvaluation provides a more convenient interface
for cases where the evaluation on different cells does not happen at the same points mapped from the refer-
ence cell. For tensor product finite elements (FE_Q, FE_DGQ) and tensor product mappings (MappingQGeneric
and derived classes), the new approach is also very fast, as it can use some of the matrix-free infrastructure
and vectorization facilities.

As an example, let us consider the evaluation of a surface tension force in the context of sharp-interface
methods, whose contribution is added to a fluid solver by multiplication with test function and addition over
quadrature points located at the interface section ΓK = Γ ∪ K of the current cell K and that is, in general,
positioned differently within K than for any other cell:

(v, 𝜘n)Γ ≈∑
q
v(xq) ⋅ (𝜘(xq)n(xq)) (JxW)q .
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In deal.II, this can now be conveniently written as

C++ code

phi_curvature.reinit(cell, reference_points);

phi_normal.reinit(cell, reference_points);

phi_force.reinit(cell, reference_points);

phi_curvature.evaluate(curvature_values, EvaluationFlags::values);

phi_normal.evaluate(normal_values, EvaluationFlags::values);

for (unsigned int q =0; q <n_points; ++q)

phi_force.submit_value(phi_curvature.get_value(q) *

phi_normal.get_value(q) *JxW[q], q);

phi_force.integrate(force_values, EvaluationFlags::values);

The quadrature points (at reference positions reference_points) and the related JxW value can, for exam-
ple, come from a mesh of lower dimension. Determining to which cell a quadrature point belongs to on
the background mesh, including the reference cell coordinates reference_points, is aided by functions
like find_active_cell_around_point() and find_all_active_cells_around_point() from the GridTools
namespace. While these functions have been available in deal.II previously, their performance has been
considerably enhanced with the aforementioned more optimized code paths for selected mappings.

While FEPointEvaluation assumes that evaluation points are already sorted according to the owning
cells and thus can focus on cell-local operations, the new class RemotePointEvaluation is responsible for
determining the owning cells in a distributed context and for providing efficient communication patterns for
the data exchange. In deal.II, the class has been successfully applied together with FEPointEvaluation to
evaluate a distributed solution vector at arbitrary points (see also the VectorTools::point_values() func-
tion).

2.7 Simplified implementation for face integrals

Discontinuous Galerkin (DG) methods — and other methods with penalty terms defined on faces — require
the evaluation of averages and jumps across cell faces, involving values and derivatives of the shape func-
tions and solutions from two adjacent cells. The FEInterfaceValues class, first introduced in deal.II 9.2, is
designed to provide the necessary interface.

For example, the interface terms of the SIPG formulation for a Laplace problem

∑
F
− ⟨[[vh]] , {{∇uh}} ⋅ n⟩F − ⟨{{∇vh}} ⋅ n, [[uh]]⟩F + ⟨[[vh]] , σ [[uh]]⟩F

with face jump [[⋅]] and average {{⋅}} can be implemented as (also see step-74):

C++ code

cell_matrix(i, j) +=

( -fe_iv.jump(i, q) *(fe_iv.average_gradient(j, q) *n)

-(fe_iv.average_gradient(i, q) *n) *fe_iv.jump(j, q)

+penalty *fe_iv.jump(i, q) *fe_iv.jump(j, q)

) *JxW[q];

Internally, this class provides an abstraction for two FEFaceValues objects (or FESubfaceValues when
using adaptive refinement). The class introduces new interface degrees of freedom indices that are the union
of the degrees of freedom indices of the two FEFaceValues objects. The interface degrees of freedom indices
can be converted to the corresponding local degrees of freedom indices of the two cells using a helper func-
tion. New in the current release is better support for vector-valued problems: scalar or vector components of
shape functions can now be extracted by providing an FEValuesExtractors object.
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See step-12, step-47, step-50, and step-74 for more details.

2.8 The source-based toolchain installer candi

The requirement to download, compile, and install deal.II and its dependencies from source is a major
obstacle to many deal.II users. Compiling all dependencies from source can be difficult but is a necessity
on operating systems for which binary packages aren’t available or on compute clusters and other machines
without root privileges for the user to install system dependencies.

The source based installation of deal.II and its many dependent libraries can be done with the candi
script tool for various Linux operating systems, within the Windows Subsystem Linux (WSL), and on OS X
(experimental). The general assumption is that a C, C++, and Fortran compiler and suitable MPI-compilers
for the base compilers as well as the corresponding development system packages are available.

candi is a bash-script based tool, is an abbreviation of ‘compile and install’ and is released under the
GNU LGPL v3.0. The origin of candi is a fork made in 2013 from dorsal, a now-retired source based installer
for the FEniCS library. The candi tool can be found via the download page of deal.II since version 8.5 or from
github.com/dealii/candi, and is under active development. To install older releases of deal.II toolchains,
one can check out the candi branch of the git repository that corresponds to the desired deal.II version.

candi downloads, unpacks, compiles, and installs an individual library (called a ‘package’ in candi), a
list of libraries, or a complete toolchain. The toolchain installation is the default behavior and the default
configuration ensures that most of the deal.II step tutorials can be used directly. The package installation
mode is also useful to generate docker containers. In toolchain mode, candi checks for and deals with de-
pendencies between libraries appropriately.

Each package for a library is defined by variables for its name and version, a (remote or local) download
location, its packaging format (e.g., tar, gz, or zip), a checksum, its general build chain (e.g., using autotools,
cmake, or others), as well as configuration options. Moreover, one can give specific instructions for each of
the steps being necessary for the unpacking, configuration, or building of a package. A new feature allows
candi to skip user prompts, allowing its use in a batch mode.

candi does all this by either downloading packages from the internet, including through mirrors, or re-
using previously downloaded or checked out from a repository. If temporary files of candi are not removed,
one can use the developer mode to prepare patches or developments for any of the packages.

candi is organized in the following way:
– candi.sh: the bash script which controls the overall process. Available command line options are listed

by calling ‘candi.sh -h’ and explained in the README.md file.
– candi.cfg (or local.cfg): the default toolchain configuration file. Here one can easily switch on/off fea-

tures, give additional configuration, and list the packages for a toolchain.
– deal.II-toolchain folder: the central project folder for deal.II-based toolchains. It contains subfolders

for packages (libraries, dependencies, general tools in a specific version), platforms (operating systems)
and for patches to be applied after unpacking a package.

The installer is developed in the dealii/candi github repository, and uses continuous integration (CI) to
ensure that old and new features are working as expected.

2.9 New and improved tutorials and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release. In addition,
there are a number of new tutorial programs:
– step-19 is an introductory demonstration of deal.II’s particle functionality. It solves the coupled prob-

lem of charged particles and an electric field, using a cathode tube as an example.
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– step-66, a programwritten by Fabian Castelli at Karlsruhe Institute of Technology, shows how to solve a
nonlinear problem using Newton’s method in the matrix-free framework in parallel. The PDE considered
is the Gelfand problem −△u = exp(u).

– step-68 is a demonstration of how to embed and distribute particles in a parallel triangulation. It tracks
the movement of a set of particles in a fluid flow and illustrates how to distribute a parallel domain ac-
cording to the number of locally owned particles instead of the number of locally owned cells.

– step-71 focuses on automatic and symbolic differentiation (AD and SD, in short) as a tool tomake solvers
for complex, nonlinear problems possible. To this end, deal.II can interface to a number of AD and
SD libraries, specifically Trilinos’ Sacado package [13], ADOL-C [31], and SymEngine [61]. The tutorial
illustrates how these techniques can be used to compute derivatives first of a rather simple function,
and then of the much more complex energy functions of two magnetoelastic and magneto-viscoelastic
material formulations in which just the scalar energy functional takes up the better part of a page, and
even first derivatives can only be computed with heroic effort.

– step-72 illustrates the use of automatic differentiation to simplify the computation of derivatives in the
context of nonlinear partial differential equations where one needs to compute the Jacobian from the
residual operator for efficient Newton iterations. step-72 builds on the minimal surface solver step-15
and replaces thehand-constructionof the Jacobianbyeither computing it as thederivative of the residual,
or alternatively as the second derivative of an energy functional that then also yields the residual itself.

– step-74 implements the symmetric interior penalty Galerkin (SIPG) method for Poisson’s equation us-
ing the FEInterfaceValues class within the MeshWorker::mesh_loop() framework. This tutorial demon-
strates a simple way to assemble face integrals.

– step-75 demonstrates a state-of-the-art way of solving a simple Laplace problem using hp-adaptation
and hybrid multigrid methods on machines with distributed memory. This tutorial points out particular-
ities in porting serial hp-adaptive code for parallelization. Furthermore, it guides through the process of
writing an efficient matrix-free preconditioner for hp-adaptive applications.

– step-76 is an explicit time integrator for the compressible Euler equations discretized with a high-order
discontinuous Galerkin (DG) scheme, using the matrix-free infrastructure just as step-67 does. The tu-
torial presents advanced topics, like the usage of cell-centric loops and the new MPI-3.0 shared-memory
capabilities of MatrixFree to reach high throughput. Furthermore, the utilization of the template param-
eter VectorizedArrayType and the application of lambda functions to describe cell and face integrals are
discussed.

– step-77 is a program that illustrate deal.II’s interfaces to the SUNDIALS library [37], and specifically
the KINSOL nonlinear solver. Like the step-72 programmentioned above, it is a variation of the minimal
surface solver step-15: Instead of implementing the nonlinear Newton and line search loop ourselves,
step-77 relies on KINSOL for decisions such as when to rebuild the Jacobian matrix, when to actually
solve linear systemswith it, and how to formupdates that drive the residual to convergence. The program
illustrates the substantial savings that can be obtained by not re-inventing thewheel but instead building
on an existing and well-tuned software such as KINSOL. deal.II’s interfaces to the various SUNDIALS
sub-packages were also updated to the latest SUNDIALS release, 5.7.

– step-78, a program written by Tyler Anderson at Colorado State University, solves the one-dimensional
Black-Scholes equations to model the price of stock options.

– step-79 is a program for topology optimization. Written by Justin O’Connor at Colorado State University,
the program asks what the optimal distribution of a finite amount of material in a domain is to maximize
its strength (or optimize some other objective functional). It uses advanced optimization techniques to
deal with the nonlinearity of the problem as well as with the equality and inequality constraints that
characterize the application.

There is also a new program in the code gallery (a collection of user-contributed programs that often solve
more complicated problems than tutorial programs, and intended as starting points for further research
rather than as teaching tools):
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– ‘Laplace equation coupled to an external simulation program’ was contributed by David Schnei-
der and Benjamin Uekermann at Technical University of Munich. It extends step-4 to a time-dependent
Poisson problem and couples it with a simple external surface-based application, using the preCICE li-
brary [16, 46]. preCICE, also allows to couple deal.II to external simulation packages, such as Open-
FOAM, SU2, CalculiX, or FEniCS, using adapter classes. The webpage https://precice.org/ provides sev-
eral more deal.II-based tutorials, including interesting fluid-structure interaction applications.

2.10 Incompatible changes

The 9.3 release includes around 45 incompatible changes; see [47]. The majority of these changes should not
be visible to typical user codes; some remove previously deprecated classes and functions; and the majority
change internal interfaces that are not usually used in external applications. That said, the following are
worth mentioning since they may have been more widely used:
– The hp::DoFHandler class has been deprecated. The standard DoFHandler class is now capable of all

hp-functionalities.
– Consequently, all template arguments DoFHandlerType are now obsolete, and classes like DataOut or

SolutionTransfer for example no longer require them. If you rely on these template arguments, an in-
terim namespace Legacy has been introduced that provides all affected classes with the old interface for
a transition period.

– GridTools::find_active_cell_around_point() no longer throws an exception when no cell is found,
but returns an invalid iterator. User codes previously catching an exception will need to be changed.

3 How to cite deal.II
In order to justify the work the developers of deal.II put into this software, we ask that papers using the
library reference one of the deal.II papers. This helps us justify the effort we put into this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the library,
please reference the present document. For up to date information and a bibtex entry see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [11], and a more recent publica-
tion documenting deal.II’s design decisions is available as [7]. If you rely on specific features of the library,
please consider citing any of the following:

– For geometric multigrid: [18, 39, 40];
– For distributed parallel computing: [10];
– For hp-adaptivity: [12];
– For partition-of-unity (PUM) and finite element

enrichment methods: [22];
– For matrix-free and fast assembly techniques:

[42, 43];
– For computations on lower-dimensional mani-

folds: [23];
– For curved geometry representations and mani-

folds: [32];

– For integration with CAD files and tools: [33];
– For boundary element computations: [29];
– For the LinearOperator and PackagedOperation

facilities: [49, 50];
– For uses of the WorkStream interface: [63];
– For uses of the ParameterAcceptor concept, the

MeshWorker::ScratchData base class, and the
ParsedConvergenceTable class: [57];

– For uses of the particle functionality in deal.II:
[26].
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deal.II can interface with many other libraries:

– ADOL-C [31, 64];
– ArborX [44];
– ARPACK [45];
– Assimp [59];
– BLAS and LAPACK [4];
– cuSOLVER [19];
– cuSPARSE [20];
– Gmsh [27];

– GSL [25];
– Ginkgo [28];
– HDF5 [62];
– METIS [41];
– MUMPS [1–3, 51];
– muparser [53];
– OpenCASCADE [54];
– p4est [17];
– PETSc [8, 9];

– ROL [56];
– ScaLAPACK [15];
– SLEPc [34];
– SUNDIALS [37];
– SymEngine [61];
– TBB [55];
– Trilinos [35, 36];
– UMFPACK [21].

Please consider citing the appropriate references if you use interfaces to these libraries.
The two previous releases of deal.II can be cited as [5, 6].
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