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Abstract

Growthinsoftbiological tissuesingeneral results in anisotropicchanges of the tissue geometry. It remains
a key challenge in biomechanics to understand, quantify, and predict this anisotropy. In this paper, we
demonstrate that anisotropic tissue stiffness and the well-known mechanism of tensional homeostasis
induce a natural anisotropy of the geometricchanges resulting from volumetricgrowth in soft biological
tissues. Asarule ofthumb, this naturalanisotropy makes differential tissue volume elements dilate mainly
in the direction(s) of lowest stiffness. This simple principle is shown to explain the experimentally
observed growth behaviorina host of different soft biological tissues withoutrelyingon any the additional
heuristic assumptions or quantities (such as ad-hoc defined growth tensors).

1 Introduction

In biological tissues one frequently observes growth, that is, production or degradation of tissue mass
along with directly associated changes of the tissue geometry. Growth can be dividedinto two categories.
Surface growth results from deposition of mass on external oralso internal surfaces of tissues ororgans.
Examples are the growth of biofilms, horns, nails, hair orseashells (Skalak, Farrow et al. 1997, Soleimani,
Wriggers et al. 2016). By contrast, in volumetric growth material is deposited throughout the whole
volume of tissues. For example, growth of collagenous soft tissues results from collagen production by
smooth muscle cells or fibroblasts distributed all over the volume of, for example, blood vessels or
tendons (Humphrey, Dufresne et al. 2014). If mass is produced in a differential tissue volume element,
the volume element in general has to expandin order to accommodate the additional mass. Therefore,
volumetric growth is usually modeled as a local inelastic dilatation (Rodriguez, Hoger et al. 1994) of
differential tissue volume elements. This dilatation is in general anisotropic (i.e., unequal in different
spatial directions) asillustrated alsoin Figure 1. Its anisotropy plays a key role in soft tissue biomechanics.
For example, itenables arteries toincrease wall thickness underincreased blood pressure. Without such
ability, arteries might be proneto rupture in particularin early lifewherethe shape of and load on tissues
and organs changes continuouslyand considerably. For developing theoretical and computational models
of volumetric growth in soft biological tissues it is thus essential to understand and quantify the factors
governing the anisotropy of the geometric changes induced by growth.



Figure 1. If blood pressureinanartery (left) is increased, the wall thickens (right). Thereby differential volume elements (black)
dilate not isotropically (i.e., equally in circumferential direction and wall-thickness direction) but anisotropically (i.e., mainly in
wall-thickness direction). This way, differential volume elements with initial square cross section become rectangular with an
elongatedside in wall-thicknessdirection. So far, the origin of this anisotropy and similar other observations related to volumetric
growth in soft biological tissues remains poorly understood.

Theoretical and computational models of the growth and remodeling of living soft tissues have attracted
rapidly increasing attention over the last decade (Goriely and Vandiver 2010, Karsaj, Sori¢ et al. 2010,
Grytz, Meschke etal. 2011, Grytz, Sigal etal. 2012, Valentin, Humphreyetal. 2013, Grytsan, Watton etal.
2015, Lindquist Liljeqvist, Hultgren et al. 2016, Braeu, Seitzetal. 2017, Virag, Wilson et al. 2017). Recently,
there have been attempts to inform such models by experiments measuring the in general anisotropic
changes of tissue geometry during growth (Tsamis, Chengetal. 2012). However, the natural difficulties to
obtain such information in vivo limit the application of such approaches so far significantly. Therefore,
theories have been developed how anisotropicshape changes of differential volume elements might be
defined in the absence of specific experimental information. (DiCarlo and Quiligotti 2002, Ambrosi and
Guana 2007) proposed the hypothesis that they might be governed by an Eshelby-like stress tensor.
Despite its theoretical elegance this approach is currently not widely used, possibly because of its
difficulties to explain without further assumptions the experimentally observed growth behavior in
important situations, for example, in blood vessels in hypertension. As a consequence, currently most
theoretical and computational models of volumetric growth of soft living tissues still rely on mainly
heuristicassumptions about the anisotropy of the geometricchanges resulting from the growth process.
These assumptions are usually simply made such that reasonable results are obtained in the end.
Obviously, this prevents truly predictive simulations. Moreover, simplisticas sumptions such as the one of
isotropic growth are widely used but render for many relevant applications results that are in strong
disagreement with experimental observations as pointed outin (Braeu, Seitz et al. 2017).

It is thus widely acknowledged that there remains a pressing need for a theory that can predict the
anisotropy of the changes of the tissue geometry resulting from volumetric growth in soft biological
tissues in good agreement with experimental observations and on the basis of some fundamental
mathematical or mechanical ideas (Ambrosi, Ateshian et al. 2011). Such a theory could significantly help
to understand the geometric evolution of living organisms during morphogenesis early in life as well as
the mechanobiological adaptation processes in adult tissues, for example, in aneurysmatic or
hypertensive blood vessels (Eriksson, Watton et al. 2014, Sdez, Pefia et al. 2014, Grytsan, Watton et al.
2015, Grytsan, Eriksson etal. 2017, Lin, lafrati et al. 2017). Moreover, it could provide a powerful tool for



the development of new and efficient methods in tissue engineering, a field where volumetric growth
processes are of particular importance. Finally, it could be key to understand the interplay between
mechanical and chemical factors (e.g., genetic factors) governing soft tissue growth.

In this paper, we examine the problem of volumetricgrowth specifically in soft biological tissues subject
to tensional homeostasis. Tensional homeostasis is a mechanism that relies on a coupling between
mechanics and biology and seeks to establish or maintain in tissues some preferred mechanical state
(Cyron and Humphrey 2017). It can be expected to govern growth and remodeling in load-bearing soft
collagenoustissues such as blood vessels, tendons, the bladder or stomach as well as general connective
tissue. Osseous tissuesare not considered herein.Also nervoustissuesis not considered here because the
role of tensional homeostasis in such tissues is unclear to date.

Insection 2 we first brieflydelineate a general mathematical model of volumetricgrowth and remodeling
in load-bearing soft biological tissues, largely in line with previous work. In section 3 we discuss the
micromechanical and physiological foundations of growth and remodelingin soft biological tissues, in
particular the production and degradation of tissue mass and the reorganization of the tissue
microstructure following the principle of tensional homeostasis. In section 4 we demonstrate that
anisotropictissue stiffness and the mechanism of tensionalhomeostasis, which has been observed to be
a fundamental property of various biological tissues, induce a natural anisotropy of volumetricgrowth in
load-bearing soft biological tissues. As a rule of thumb, this natural growth anisotropy will make
differential tissue volume elements dilate mainly in the direction(s) of lowest stiffness during volumetric
growth. Insection 5we demonstrate how theseideasgiverise to anew type of computational model that
can capture volumetric growth and remodeling in a host of soft biological tissues without any ad-hoc
definition of a growth tensor.

2 Continuum mechanics

Relying on the general theory of nonlinear continuum mechanics, we model soft biological tissues as
mechanical bodies whose material points X € B, are mapped at times t = 0 by a deformation to their
current position x(t,X) € B(t), seealso Figure 2. The Jacobi matrix of this deformationis the so-called
deformation gradient
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The set of material points By, is called the reference configuration, and we note that this configuration

need not be stress-free in general. Herein, we assume without loss of generality that the reference
configuration is always identical to the initial configuration, thatis, By = B(t = 0). Differential volume

F (1)

elements dV in the reference configuration B, are deformed into volume elements

dv = |F|dV. (2)

in the current configuration B(t) where | F| is the determinant of F. Herein, we model biological tissues
as so-called constrained mixtures. That is, we assume that the material in each volume element isa
mixture of n constituents. For the i-th constituent, the deformation gradient can be splitinto an inelastic
part Fér and an elastic part Fi such that



F= F.F,,. (3)

Here, the inelastic part Fgr characterizes how the material of the i-th constituentin avolume elementin
the reference configuration would deform if it were cut out from its surrounding continuum and
additionally separated from the other constituentsin the mixture and thus not subjectto any loading or
confinement any longer (cf. Figure 2). Fgr captures inelastic changes of the stress-free configuration of
the i-th tissue constituent due to growth and remodeling (Rodriguez, Hoger et al. 1994, Ambrosi and
Guana 2007, Zollner, Abilez et al. 2012, Braeu, Seitz et al. 2017, Grytsan, Eriksson et al. 2017, Kehl and
Gee 2017, Trusterand Masud 2017). The general ideato use aninelastic part of the deformationgradient
to this end goes back to (Rodriguez, Hoger et al. 1994), which introduced Eqg. (3) for the simple spedal
case n = 1 so that only a single elastic and inelastic deformation tensor were required for the whole
material. In general, the elastic state of the tissue material at each pointis defined by F and Fér. Ina
given configuration the elastic part of the deformationgradient Fi, may be different among the individual
constituents. However, we yet assume that all constituents deform together, that is, all experience the
same deformation increments over time and thus form a constrained mixture.

F

Figure 2. Illustration of the kinematics of volumetric growth and remodeling. The deformation gradient F can be split at each
pointintoan inelastic part Fér and an elastic part Ff?. The inelastic Fér accounts for inelastic changes of the stress-free
configuration of individual constituents in differential volume elements that may be associated with growth and remodeling.
Volume elements inthe reference configuration B, are deformed by F;T intoanintermediate configuration whichis in general

not geometrically compatible so that neighboring volume elements may overlap or form gaps. The elastic Fé applied to each
differential volume element ensures that the total deformation gradient field is geometrically compatible (i.e., neighboring
differential volume elements fit together without gaps or overlaps) and satisfies mechanicl equilibrium in the current
configuration B(t).

Volumetricgrowth and remodeling in biological tissues happens slowly (typically on atime scale of hours,
days, or months) and is thus modeled here as a quasi-static process so that the balance of linear
momentum is

with the total referential mass density of the mixture

n
00 =) b, (5
i=1



the mass density per unitreference volume of the i-th constituent Qf), the body force vector b (per unit
mass) and the first Piola-Kirchhoff stress tensor

oy
P = F (6)
where
n
y =Zggwi(1«“g)+l{f# (7)
i=1

is the strain energy of the constrained mixture per unit volume. W is the strain energy of the i-th
constituent perunitmass, whichisassumedto depend only onits elasticdeformation, thatis, on Fi.The
special strain energy ¥*# (per unit volume) is accounting for excluded volume interactions between the
individual mass increments and microstructural elements forming the constrained mixture. Such
interactions are often assumed to ensure in practice a (nearly) constant spatial density ¢ of all the
constituents togetheratany time. With Eq. (4.6) from (Holzapfel 2000), this assumptionis equivalent to

v = &9 4, (8)
e
or, using (2) in (8),
0 = 0o/I|F|. (9)

Therefore, ¥# can be modeled by a penalty-type energy

w0 =5 (1r0) -22) (10

with some very large €. We note that ¥# in (7) is an important difference between the approach
introduced herein and most previous work. Below we will demonstrate that one of its non-trivial
consequences is that it implicitly defines the anisotropy of the geometry changes resulting from
volumetric growth, which has to be defined so far mainly on the basis of heuristic assumptions.

If Qé and Féi,r are known, the unknown current deformation field x can be computed immediately at any
pointin time using (1), (3) and (5) — (7) in (4) so that the balance of linear momentum (4) can be written
completely in terms of the unknown deformation field x, yielding in d dimensions for the d unknown
components of x a system of d coupled differential equations. The crucial difficulty is thus determining
Ff,',r and gy at each pointin time.
To determine Qf,, one typically assumes a known initial value and an evolution equation of the type
0 = 0o ki = AG". (12)
Here the over-dot denotes a time derivative, AG' is a mass production stimulus, for example the

difference between the current stress or stretch and some homeostatic target value (cf. also Eq. (7) in
(Cyronand Humphrey 2017)). The colonin (11) denotesadouble contraction product and ki is a second



order gain tensor. In the literature different choices for AG' and ki can be found. While the exact
parametervalues used forthese quantities differ significantly, there is yet a high overallsimilarity at least
between the functional forms used.

The situationis much more involvedfor Fér, forwhich eventhe general functional form of the evolution
equationsand F;r itself remain highly controversialto date. Helping to overcomethis controversy can be

considered a primary objective of this paper.

Remark 1: the number of constituents n depends on the mathematical model of growth and remodeling.
Inthe recently developedhomogenized constrained mixture models (Cyron, Aydin etal. 2016, Braeu, Seitz
etal. 2017) or alsointhe recruitment stretch modelsfollowing (Watton, Hill et al. 2004, Eriksson, Watton
et al. 2014, Grytsan, Watton et al. 2015) n can be understood as the number of structurally different
constituents such as elastin, smooth muscle and collagen (or also different collagen fiber families) that
can be distinguished in a biological tissue. By contrast, when following the constrained mixture models
based on multi-network theory, which were introduced by (Humphrey and Rajagopal 2002) and further
used, for example, by (Wilson, Baek et al. 2012, Wilson, Baek et al. 2013), n in the above equation (7)
should rather be understood as the number of mass increments with different stress-free natural
configurations present in each differential volume element. Recalling that constrained mixture models
based on multi-network theory keep track of differential mass increments deposited during each
differentialtimeinterval, nis forthese modelsin theory infinite.In computationalimplementations where
timeisdiscretized by afinite number of pointsintime, alson isfinitebutin practice often very large. We
note that the ideas developed herein can be applied to any of the above mentioned models by simply
incorporating in these models an interaction energy ¥# as in (7) and defining the evolution of Fér
accordingto the discussion below. Thereby the exact form of ¥# islargelyirrelevantaslongasit ensures
a constant spatial density of the material (cf. (9)) sufficiently accurately.

3 Physiological foundations

To overcome the controversy how to compute Fér we first briefly recall some physiological foundations
of growth and remodeling. Noting the partially inconsistent nomenclature used in the literature, we start
with a few definitions.

In the following, the term remodeling refers to an inelastic reorganization of the microstructure of the
tissue. On the microscale, this reorganization is accomplished by biological cells rearranging the tissue
fibers and altering also the inter-molecular connections within and between these fibers. The altered
microstructure of the tissue willin general result in altered stress-free configurations of tissue material
increments, that s, in an altered F;r in Eq. (3). Tissue mass, however, is by definition not changed by
remodeling.

In opposition to that, the term of growth refers in the following to the process of production or
degradation of tissue mass as well as any elasticdeformation of the tissue thatis directly associated with
this process. By definition, growth is understood in the following as a process during which the inter-
molecularconnections defining the stress-free configuration of tissue material remain unaltered. That s,
growthis understood herein as a process not affecting Fér inEq. (3). It mayrather be imagined as a kind



of elastic swelling.

In practice, growth and remodeling, in the sense of the above definitions, may occur simultaneously. For
example, cells may produce additional collagen fibers. The additional fiber volume deposited thereby
within the tissue will in the first place induce and elastic distension of the extant tissue (i.e., a kind of
swelling). The fiber production and the associated elastic distension together are referred to as growth
herein. However, while or directly after the cells are producing new fibers they may also alter the inter-
molecularconnectionsinthe tissue, thereby changingthe stress-freestate of tissue material increments
and thus remodeling the tissue. Obviously, growth and remodelingin the sense of the above definitions
are physically per se independent processes and are thus to be treated separately also in mathematical
modeling.

Relying onthesedefinitions, this paperisbased on two major hypotheses, which wefirst briefly introduce
and then support by references to experimental observations reported in the literature.

Hypothesis 1: Remodeling is driven by tensional homeostasis only. We assume that cells remodel the
surrounding tissue so as to maintain or achieve a preferred state of mechanical stress, which is called
homeostaticstate. Moreover, we assume that this mechanism, which isalso called tensional homeostasis,
is the only driver of remodeling.

Hypothesis 2: The spatial mass density remains constant during growth. We assume that the packing
density of the fibersin the tissue does not change during growth, that is, it does not change when
additional fibers are produced or extant fibers are degraded.

Itis well-known that cells such as fibroblasts or smooth muscle cells have a natural tendency to reorganize
surrounding collagentissues towards a preferred mechanical state. To date it is not yet fully understood
which mechanical quantity exactly (e.g., stress, stretch or stiffness) defines the target of this process.
However, thereis at least considerable evidence that it might be the stressinthe tissue fibers orat least
some closely related quantity (Brown, Prajapati et al. 1998, Ezra, Ellis et al. 2010). The reorganization of
the tissue due to tensional homeostasis is well-known to imply also a reorganization of inter-molecular
connections (Cyron and Humphrey 2017) and changes thereby the stress-free configuration of differential
volume elements. While numerous papers have reported the phenomenon of tensional homeostasis, to
the authors’ best knowledge nobody has reported so farthat deposition or degradationof tissue mass are
directly associated with a specific kind of reorganization of inter-molecular connections in the tissue.
Therefore, following Ockham’s lex parsimoniae we assume Hypothesis 1.

(Cyron, Aydin etal. 2016, Braeu, Seitzet al. 2017, Cyron and Aydin 2017) demonstrated that remodeling
due totensional homeostasis can be captured by an evolution of the inelastic part Fgr of the deformation

gradient following the equation

[Qo(t) i [Si—Si,.] = Zacé-(CeLgr) o (12)

Therefore, Hypothesis ldirectly translatesinto the assumption that we can describe the evolution of Fér
in(3) by (12).In(12), Ly, = Féngr‘l isthe velocity gradientof the inelasticdeformation. T'!is the average



survival time of tissue fibers and structural connections during the microstructural reorganization driven
by tensional homeostasis. St is the second Piola-Kirchhoff stress of the i-th constituent, and €}, = FLTFL
its elastic Cauchy-Green deformation tensor with FL from (3). ngre isthe 2" Piola-Kirchhoff target stress

of tensional homeostasis.

Hypothesis 2was inspired by experimental observations reported,among others, by (Wolinsky and Glagov
1967, Matsumoto and Hayashi 1996). It was observed that the thickness of soft tissues such as arteries
underincreased load seems to adopt so as to maintain a certain preferred level of tissue stress. If, for
example, blood pressure inan artery isincreased, also its wall thickness increases until the original level
of wall stress is restored. On the other hand, the observations reported by (Flynn, Bhole et al. 2010)
suggest that fiber degradation in soft tissues strongly depends on the microscopic fiber stretch. This
stretch can therefore also be expected to be restored by tensional homeostasis. However, tensional
homeostasis can restore both fiber stress and fiber stretch at the same time only if fiber density in the
tissue remains (approximately) constant during growth. This conclusion directly motivates Hypothesis 2
Mathematically, Hypothesis 2 means that (8) and (9) hold not only in the sense of an incompressibility
condition during elastic deformation but also more generally during volumetric growth where they
enforce a constant spatial mass density over time.

Remark 2: As discussed above, thereis considerable experimental evidence supporting Hypothesis 1and
Hypothesis 2, which was the reason for choosing these two hypotheses as starting points for the
theoretical discussion in this paper. Nevertheless, one should keep in mind that the amount of
experimental observations shedding light on the physiological foundations of growth and remodeling in
soft biological tissues is still very limited and so the hypotheses proposed and conclusions drawn in this
paper certainly still require significant further examination in the future.

Remark 3: An essential feature of nearly all mathematical models of volumetricgrowth in soft biological
tissues published so far (Rodriguez, Hoger et al. 1994, Ambrosi and Guana 2007, Z6llner, Abilezet al. 2012,
Braeu, Seitzetal. 2017, Grytsan, Eriksson etal. 2017, Kehland Gee 2017, Truster and Masud 2017) isthe
assumption that growth itself is directly associated with some inelastic reorganization of the tissue
microstructure, represented by some growth tensor (i.e., a growth-induced inelastic part of the
deformation gradient). This lead to an ongoing controversy how to define this growth tensor. The growth
model proposed herein bypassesthe definition of any inelastic growth tensor. The only inelastic part of
the deformation gradient to be defined is the one related to remodeling for whose definition one can
resort to rather general observations made in vitro on the remodeling of fibroblast-seeded tissue
equivalents.

Remark 4: (Braeu, Seitz et al. 2017) suggested to capture the inelastic deformation by growth and
remodeling via a multiplicative split F},. = FLF} with F}; capturing the inelastic deformation by growth
and FL capturing the inelastic deformation by remodeling. Mathematically, the approach introduced
herein can be considered aspecial case of this concept with the particularly simple choice Fé = I, where
Iis the identity tensor.



Remark 5: theideaoftreatinggrowth andremodeling separately, whichis essential in this paper, was, in
some form, proposed already earlier by (DiCarlo, Naili et al. 2006) for osseous tissue and subsequently
also by (Cyron, Aydin et al. 2016, Braeu, Seitz et al. 2017) for soft tissue.

(a) (b)

Figure 3: Deposition of newmaterial during growth directlyinduces an elastic distension of differential tissue volume elements
that can be understood as a form of elastic swelling. This swelling will create the space that is required to accommodate the
additional mass by expandingthe volume element predominantlyin the direction(s) of lowest stiffness. Because in the direction(s)
of lowest stiffness the extant fibers will oppose the deformation of the volume element by swelling only minimally. In (a) a
differential volume element is illustrated whose stiffness in vertical direction is much higher than in horizontal direction
(illustrated by much thicker load-bearingfibers in vertical direction). Ifin this volume element additional fibers are deposited, it
will elastically dilate mainly in horizontal direction (b). This dilatation mainly in horizontal direction will trigger also remodeling
(i.e., inelastic reorganization of the tissue) mainly in horizontal direction, leading finally to a long-term anisotropic inelastic
deformation of the volume element mainlyin horizontal direction.

4 Natural anisotropy of volumetric growth and remodeling

The constant spatial mass density assumed in Hypothesis 2implies that growth is always associated with
a change of tissue volume, a kind of elastic swelling of differential volume elements. At the same time,
Hypothesis 1 implies that growth is not directly associated with any inelastic change of the tissue
microstructure (i.e., any change of Fér). Therefore, Hypothesis 1 and Hypothesis 2 together imply that
growth becomesinthe first place manifestas a kind of elasticdistension of differential volume elements
inthe tissue. This elasticdistension changes the stress field in the tissue and thereby triggers remodeling
(i.e., inelastic reorganization of the tissue) due to tensional homeostasis. In this section, we will
demonstrate that this setting gives rise to a natural anisotropy of the geometry changes induced by
volumetric growth, which is mainly governed by the anisotropy of the elastic stiffness of the tissue. We
will focus thereby on an (isolated) differential volume element to exclude confounding effects from the
surrounding continuum and boundary conditions. We will perform our analysis in two steps. In the first
step we will examine the elastic distension of the tissue directly associated with growth, in the second
step the remodeling dynamics which it gives rise to.

Via (10), the amount of mass produced perdifferential volume element per unittime ¢, determines the
ratio between the size of a differential volume element in current and reference configuration, that is,
|F(t)|. The dilatation of differential volume elements during volumetric growthiisillustratedin Figure 3.
If new material is deposited in the tissue, the extant tissue will immediately dilate elastically in order to
increase its volume and accommodate the additional material. The following discussion willdemonstrate
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that this dilatation is naturally anisotropic. To see this, we first note that via (10) and (12) volumetric
growth itself (without the remodelingit may give rise to in the longterm) alters | F(t)| but leaves Fér in

(3) constant, which means that the change of | F (t)| must be associated withsome change of FL. Nextwe
resort to the concept of traction-free configurations. In a constrained mixture of n constituents as
assumed above in (7), different constituents may have differentindividual stress-free configurations. That
is, in general there exists no configuration in which all constituents in a differential volume element are
stress-freeatthe same time. However, there alwaysexists a so-calledtraction-free configuration in which
the average stress of the different constituents weighted with theirrespective volume fractions Qg/go is
zero. The traction-free configuration can be imagined as the configuration of a differential volume
element into which it would naturally deform when cut out from its surrounding continuum and not
subjected to any external load. Herein, we denote the tensor mapping infinitesimal line elements from
(the tangent space of) the reference configuration to (the tangent space of) the current traction-free
configuration by F. If a differential volume elementis traction-freein a certain configuration, this holds
also afterany rigid body rotation. To renderthe notion of the traction-free configuration unique, we thus
define without loss of generality that F; does not imply any rotation compared to the reference
configuration. That is, F; is symmetric and the rotation tensor resulting from its polar decomposition is
simply the identity tensor. The evolution of the traction-free configuration in time can be described using
the velocity gradient (Menzel and Kuhl 2012)

L; = FgF;*. (13)

The relative rate of change of the volume of the traction-free configuration of a differential volume
elementis

dv
tr(Lg) = d—vG (14)
G

with tr(L¢) the trace of L;. As discussed above, we assume herein a constant spatial mass density g in
differential volume elements under any loading conditions and therefore also in their traction-free
configuration. Therefore, the relative rate of change of the size of differential volume elements in the
traction-free configuration must be equal to the relative rate of change of the mass in these volume
elements, thatis,

% - Z%Z = tr(Lg). (15)
F is associated with an elastic distension of the extant material while new material is squeezed in. To
quantify it, we consider an infinitesimal change dF; of the traction-free configuration that results from
the deposition of an additional mass increment dm. The traction-free configuration of the material that
has been in the differential volume element already before deposition of the mass increment dm does
not change during the deposition process (recalling that herein we assume that growth and remodeling
are separate processes, see also section 3). Let the elasticbulk stretch tensor of this materialbe Fg. Fg
maps between the traction-free configuration of the material existing before deposition of dm and its
current traction-free configuration. By definition, before deposition of dm one has Fp = I. After
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deposition of dm and the associated change of the traction-free configurationby dF;onehas Fp = I +

(I+ dFE)FG:FG+dFG, (16)
giving
dFy = dF;Fg". (17)

Dividing (17) by the time increment dt over which the mass increment dm is deposited and using (13)
yields

FE=LG' (18)

The rate of change of the elastic Cauchy-Green deformation tensor Cp = FEFE of the extant material
duringthe growth processisthus(inagiven traction-free configuration where the extant material exhibits
a bulk elastic stretch tensor Fg = I)

with

1
D =7 (L +LL) (20)

the symmetricpart of the velocity gradient L. Strain energy of the extant material in the neighborhood
of a given traction-free configuration (in which we have C; = I forthe extant material) can be expressed
via a Taylor expansion as

1 0%y

o

aCE > : E : dCE+O(dCE:dCE) (21)

with the Lamdau symbol o(.) and colons denoting double contraction products between tensors. By
definitioninthe traction-free configuration 0% /dCy = 0.Then from (19) and (21) we conclude that the
elasticenergy of the material in a differential volume element changes during mass deposition over a time
interval of length dt by the increment

1 0’y 0’y

d¥Y ==dC; : —= : dC; = 2dt?D; : —: Dg. 22

2 E acg E G aC%: G ( )
As can be seen from (15), the mass production rate perunitreference volume ¢y determines the rate of
relative volumetric expansion of the traction-free configuration. But it does not enforce any specific shape
of the traction-free configuration.As aconsequence of the principle of minimumenergy, the shape of the
traction-free configuration will thus evolve such that d¥ is minimal. Let d¥ be minimal for D; = D.

Then

. . RS
D; = argminyD; : = : D¢, (23)
DG aCE
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that is, Dy, is the Dz which minimizes the term in the braces. Assuming a constant spatial mass density
(as we do herein), using (15) and (20) in (23) leads to the constrained optimization problem

D; =  argmin {DG :az—f : DG}. (24)
Dg: tr(Dg)=00/0o dCx

where ¥ = ¥ — W*jsthe total strain energy minus the (isotropic) penalty energy ¥* modeling exduded

volume interactions and ensuring constant spatial density. The fourth order stiffness tensor ahﬁ/acg is

symmetric and assumed here to be positive definite. Its inverse is the compliance tensor S. As shown

in Appendix A, the unique solution to (24) is

* Q‘O __

DG =m§ (25)

The symmetricpart D of the velocity gradient L indicates how fast the traction-free configurationof a
differential volume element dilates in different directions, cf. also section 4.5.2 in (Gonzalez and Stuart
2008). For example, aftera principal axis transformation the diagonal elements of D indicate the strain
rate at which the traction-free configuration dilates along the principle axes. From (25) itis thus apparent
that, as a rule of thumb, during volumetric growth differential volume elements will dilate elastically
mainly in the direction(s) of maximal compliance, that is, of lowest stiffness. This can indeed be
understood quite intuitively. The elastic dilatation associated directly with growth is a form of e