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We investigate whether the recently observed trends in daily maximum and minimum near-surface 11 

air temperature (Tmax and Tmin, respectively) over South America (SA) are consistent with the 12 

simulated response of Tmin and Tmax to anthropogenic forcing. Results indicate that the recently 13 

observed warming in the dry seasons is well beyond the range of natural (internal) variability. In 14 

the wet season the natural modes of variability explain a substantial portion of Tmin and Tmax 15 

variability. We demonstrate that the large-scale component of greenhouse gas (GHG) forcing is 16 

detectable in dry-seasonal warming. However, none of the global and regional climate change 17 

projections reproduce the observed warming of up to 0.6 K/Decade in Tmax in 1983-2012 over 18 

northern SA during the austral spring (SON). Thus, besides the global manifestation of GHG 19 

forcing, other external drivers have an imprint. Using aerosols-only forcing simulations, our results 20 

provide evidence that anthropogenic aerosols also have a detectable influence in SON and that the 21 

indirect effect of aerosols on cloud’s lifetime is more compatible with the observed record. In 22 

addition, there is an increasing trend in the observed incoming solar radiation over northern SA in 23 

SON, which is larger than expected from natural (internal) variability alone. We further show that 24 

in the dry seasons the spread of projected trends based on the RCP4.5 scenario derived from 30 25 

CMIP5 models encompasses the observed area-averaged trends in Tmin and Tmax. This may 26 

imply that the observed excessive warming in the dry seasons serve as an illustration of plausible 27 

future expected change in the region.  28 

 29 
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1. Introduction 30 

There is increased interest in understanding anthropogenic global warming in specific regions. The 31 

Amazonian region includes about one half of the world’s tropical forests and is a key component 32 

of the global carbon cycle (Cox et al., 2000). Exbrayat and Williams (2015) suggest that biomass 33 

loss due to deforestation in the Amazon alone has contributed approximately 1.5% to the increase 34 

in atmospheric CO2 concentrations over the last decade. In addition to the greenhouse gas forcing, 35 

land-use changes due to expanding agricultural activities and black carbon aerosols from biomass 36 

burning are potentially the most important external drivers of climate change over South America 37 

(SA) (Exbrayat and Williams, 2015). Smoke aerosols released from biomass burning in the 38 

Amazon and Savannah regions, as well as pollution emitted from mega cities have very large 39 

effects on the net energy input to the atmosphere (Procopio et al., 2004, Lin et al, 2006). Natural 40 

phenomena are also associated with climate change and variability over SA including the effects 41 

of atmosphere/ocean modes of climate variability. According to the Working Group I contribution 42 

to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC 43 

2013), near-surface temperature over SA has been increasing over the last several decades. 44 

Consistently, the retreat of tropical glaciers has accelerated, especially since the late 1970s (area 45 

loss between 20 and 50%; Bradley et al., 2009). The AR5 report states with medium confidence 46 

that over SA warm extremes are increasing in severity and frequency while cold extremes are 47 

decreasing (IPCC 2013). The observed temperature trends from the beginning of the observational 48 

record to 2010 averaged over SA are consistent with the simulated response to combined natural 49 

and anthropogenic forcings by the CMIP5 (Coupled Model Intercomparison Project 5) models 50 

(Knutson et al. (2013); De Barros Soares et al. (2016)). 51 

In this study, we employ global and regional climate models to determine whether the SA climate 52 

has changed as a result of global increases in greenhouse gas concentrations. Being able to 53 

distinguish the externally driven changes in observed trends from those that are internally 54 

generated will help to understand the present-day climate and motivate actions to cope with the 55 

consequences of future climate change. With this goal, we will assess in the first step whether the 56 

observed changes are likely to have been due to natural (internal) variability alone, and if not, 57 

whether they are consistent with the simulated response to anthropogenic forcing.  58 
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Moreover, we examine for the first time to what extent the observed climate trends in SA are 59 

already an indication of the conditions described by the climate change scenarios at the end of this 60 

century. The approach we use has been earlier applied to the climate variables over the 61 

Mediterranean and Baltic Sea region (Barkhordarian et al. 2012b, 2013, 2016). In the present 62 

study, we focus on changes in daily minimum/maximum temperature (Timn and Tmax, 63 

respectively) and incoming solar radiation over SA. By linking past changes to expected future 64 

changes, this research will contribute to provide an illustrative example of what a future climate 65 

influenced by enhanced greenhouse gas concentration might look like. Our finding will inform 66 

policy makers about plausible climate changes through scientific analysis by distinguishing 67 

between natural and anthropogenic causes, which is critical to assessing the impact of mitigation 68 

plans and developing adaptation strategies.  69 

The remainder of this paper is structured as follows. Details on the observational and model data 70 

are given in Sect. 2. The methodology used in this study is discussed in Sect.3. The results 71 

including the detection, influence of modes of natural climate variability and the attribution, are 72 

shown in Sect. 4. Surface solar radiation analysis is shown in Sect. 4.3. The dependence on the 73 

period selected to calculate trends is discussed in Sect. 4.4. The main conclusions and discussions 74 

are presented in Sect.5. 75 

2. Observations and model data 76 

The observed temperature record is from the latest version of the Climate Research Unit’s (CRU) 77 

gridded high resolution (0.5° by 0.5°) dataset CRU TS 3.24.01, which is available from 1901 to 78 

2015 [Harris et al 2014]. In this study, we do not use CRU data before 1951 because of the scarcity 79 

of stations especially over northern South America. The station records in this dataset are quality 80 

controlled and homogenized using the automated method proposed in Easterling and Peterson 81 

[1995]. For surface solar radiation a continuous and validated climate data record (CDR) based on 82 

the Meteosat First Generation (MFG) satellites is used [Posselt et al 2011]. For the climate change 83 

projections, we consider 30 global climate simulations with coupled AOGCMs. Here we use all 84 

available models to assess the robustness of the results against the influence of model difference 85 

(Supp. Table 1 indicates the list of the models and the number of simulations). The output of these 86 

simulations is provided through the CMIP5 archive, which include projections driven by future 87 

GHG atmospheric concentrations following the Representative Concentration Pathway 4.5 (RCP 88 
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4.5, [Meinshausen et al., (2011)]). In order to capture the fine scale structure of climate change 89 

signals, we further use MPI-CSC-REMO2009 regional climate simulations driven by MPI-ESM-90 

LR from WCRP CORDEX [Jones et al., 2011]). In addition, 10 CMIP5 model simulations are 91 

used to estimate the response to different external forcings. We further use long pre-industrial 92 

control integrations of CMIP5 climate models, which are pre-industrial control experiment with 93 

all forcing held constant. 94 

3. Methodology  95 

We follow the research methodology presented in Barkhordarian et al. (2012b, 2013, 2016).  In 96 

the first step, we assess whether the observed changes in Tmin and Tmax are compatible with an 97 

undisturbed stationary climate and, if not, whether they are consistent with the modeled response 98 

to anthropogenic forcing. The comparison between observations and simulations is carried out 99 

using correlation statistics and regression indices (Barkhordarian et al. 2013). The response to 100 

external forcing is defined either as the simulated trends in the observational period or as the trend 101 

obtained in future climate simulations. 102 

    3.1. Anthropogenic climate change signal estimate  103 

In this study, we use two approaches to estimate anthropogenic climate change signals (GHG and 104 

aerosols). In the first approach, we use single forcing runs for the historical period, which is 105 

available for only a subset of CMIP5 models. From the single forcing runs we consider 2 groups 106 

of simulations. One group (GHG) includes 29 simulations conducted by 7 models forced with 107 

historical well-mixed greenhouse gases only (BCC-CSM1-1, CanESM2, CNRM-CM5, CSIRO-108 

Mk3-6-0, GISS-E2-H, GISS-E2-R, IPSL-CM5A-LR). A second group (AA) includes 10 109 

simulations conducted by 3 models forced with anthropogenic aerosols only (CanESM2, CSIRO-110 

Mk3-6-0, NorESM1-M). In these simulations, aerosol emissions (or concentrations) are allowed 111 

to vary in time whereas all other forcing variables are set to preindustrial values. In the multi-112 

model ensembles mean of 7 models (29 GHG simulations), the internal variability is reduced by 113 

about 90 percent, which leads to an enhanced signal-to-noise ratio in estimated signal patterns. 114 

For the second definition of the climate response, we use time-slice climate change experiments 115 

and define the anthropogenic climate change signal (Greenhouse gas and Sulfate aerosols, GS) as 116 

the difference between the last decades of the 21st century (2071– 2100, RCP4.5 scenario) and the 117 
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reference climatology (1961– 1990). We assume a linear development in multi-decadal running 118 

means from 1961–2100 and the resulting signal is scaled to change per year (Bhend and von 119 

Storch, 2009).  120 

We further subdivided the AA simulations into two groups to separately investigate the impact of 121 

aerosol concentration on, (1) cloud droplet radius and cloud droplet concentration, which is known 122 

as the “first indirect effect” or “cloud albedo effect” [Ramaswamy et al., 2001], and (2) cloud 123 

lifetime, depth, and liquid water content, which is known as either the “second indirect effect” or 124 

“cloud lifetime effect” [Lohmann and Feichter, 2005]. Hence, AA1 simulations include both the 125 

first and second indirect effect, while AA2 simulations include the first indirect effect only. These 126 

simulations (GS, GHG, AA1 and AA2) will be used to identify the primary drivers of observed 127 

trends of Tmin and Tmax over SA.  128 

4. Results  129 

Figures 1 and 2 present a comparison of the observed spatially averaged change of the seasonal 130 

mean Tmax and Tmin, respectively over the period from 1983-2012 together with the multimodel 131 

ensemble mean response to different external forcings. The forcings considered include 132 

greenhouse gas and sulfate aerosols (GS), greenhouse gas only (GHG), and anthropogenic aerosols 133 

only, both with and without the “cloud lifetime effect” of aerosols (AA1 and AA2, respectively). 134 

Over SA, the observed record indicates an upward trend in Tmin and Tmax in all seasons, with a 135 

maximum rate of increase in SON (September-November) and minimum in MAM (March-May). 136 

Both Tmax and Tmin have their lowest levels of variability in DJF (December-February), with 137 

that of Tmax variability larger than Tmin (red whiskers in Figs 1 and 2). Regarding the spatial 138 

pattern of changes the warming is observed throughout the region. The maximum values are over 139 

central Brazil in the dry seasons (JJA, SON), although some areas of cooling are also notable along 140 

the west coast of SA in both Tmin and Tmax. A cooling of up to -0.2 K/Decade in Tmax is 141 

pronounced in DJF along the extratropical west coast of northern Chile, the Andes of Bolivia, 142 

Ecuador and southwestern Colombia. The observed cooling, we find in the observation along the 143 

extratropical west coast of SA is consistent with other studies (e.g., Falvey and Gerreaud 2009; 144 

Schulz et al., 2012; Vuille et al., 2015).  145 

The increasing trends in Tmax and Tmin have been observed and also projected by the global and 146 

regional climate models used in this study in response to GHG forcing (Figs 1 and 2, respectively). 147 
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The CORDEX model agrees with the suite of all 30 CMIP5 models in projecting a general 148 

warming across SA with largest values over the tropical latitudes, based on RCP4.5 scenarios (See 149 

Sup. Figs 1 and 2). The agreement found between the CMIP5 and CORDEX simulations leads to 150 

the conclusion that projected warming over SA is robust against substantial modifications in the 151 

configuration of the climate models. The projected warming is more pronounced in Tmax with 152 

values up to +0.4 k/decade over central Brazil in SON. Similar features were found in the former 153 

generation of global [Blázquez et al (2012)] and regional climate change projections based on A1B 154 

(A2) scenarios [Urrutia and Vuille (2009); Nuñez et al (2009); Marengo et al (2009); Sánchez et 155 

al (2015)]. It is important to note that none of the 30 global climate simulations and the regional 156 

climate simulation used in this study reproduce the observed warming of up to +0.6 K/Decade in 157 

Tmax over Brazil and northern Argentina in SON (Sup Figure 1).  158 

As shown in Figs 1 and 2, the observed positive trends in Tmin and Tmax contrast with the 159 

negative trends obtained in the aerosol-only AA2 simulations without the “cloud lifetime effect” 160 

of aerosols (purple bars in Figs 1 and 2). However, the AA1 simulations that consider the “cloud 161 

lifetime effect” of aerosols obtain a small positive trend in Tmin and Tmax (red bars in Figs 1 and 162 

2). Such a difference may indicate that the direct aerosol–radiation interactions results in a net 163 

cooling. However, when the changes in clouds due to radiatively absorbing aerosol are considered, 164 

the reduction in cloud cover increases the net short-wave radiation reaching the surface, producing 165 

a warming that counteracts the direct aerosol cooling (Archer-Nicholls et al., 2016).  166 

4.1. Detection of externally forced changes 167 

In this section, we assess whether the observed trend of Tmin and Tmax presented above can be 168 

due to natural (internal) variability alone. To do so, seasonal observed trends are compared with 169 

the estimated natural (internal) variability derived from control integrations of CMIP5 climate 170 

models. From 20,000-simulated years of control runs we draw 600 non-overlapping 30-year 171 

segments to estimate the natural (internal) variability of 30-year trends. The observed trend is 172 

likely not due to natural (internal) variability alone if it lies outside the 2.5%-97.5% quantile range 173 

of the control runs. Therefore, externally forced changes are detectable in cases where the 97.5th 174 

percentile confidence interval (red whiskers in Figures 1 and 2, one tailed test) excludes zero. The 175 

results indicate that externally forced changes are detectable (at 2.5% level) in observed trends of 176 
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Tmax in JJA and SON (Fig 1). In terms of Tmin, externally forced changes are detectable in all 177 

seasons except MAM (Fig 2).  178 

Regarding the spatial pattern of change, Fig. 3 (middle column) shows regions where the externally 179 

forced changes are detectable in observed trends of Tmax over 1983-2012. Similarly, Fig. 4 180 

(middle column) shows regions where externally forced changes have a detectable influence in 181 

observed changes of Tmin (at 2.5% level). These results provide evidence that in SON and JJA 182 

the observed warming of up to 0.6 K/Decade over the central Brazil and northern Argentina in 183 

1983-2012 is above the expected range of natural (internal) fluctuations. Some regions with 184 

cooling mostly for Tmax are also detectable over Ecuador, Colombia, the Andes of Bolivia (Figs 185 

3 and 4, middle column) that can’t be explained by natural (internal) variability.  186 

4.1.1. Influence of modes of natural climate variability  187 

Numerous studies have identified strong connections between the SA climate and atmospheric and 188 

oceanic modes of climate variability, namely, the El Niño Southern Oscillation (ENSO) [Marengo 189 

1992], the Pacific Decadal Oscillation (PDO) [Mantua and Hare 2002], and the Southern Annular 190 

Mode (SAM) [Thompson and Wallace 2000]. The study by Loikith et al (2017) demonstrates that 191 

ENSO, PDO, Atlantic Niño, and SAM show significant relationships with extreme temperature 192 

months over South America. The observed significant and sustained warming during 2000-2010 193 

over Amazonia has been found related to SST anomalies in the tropical Atlantic during the JAS 194 

season and SST anomalies in the central/east Pacific during the JFM season (Jiménez-Muñoz et 195 

al., 2013). It is now recognized that CMIP5 models tend to underestimate the amplitude of these 196 

climate modes of variability [e.g. Kumar et al., 2013, Chadwick et al., 2015]. Such an 197 

underestimation of the simulated internal climate variability may lead to a spurious detection 198 

result, if as a consequence the simulated natural internal variability is of smaller amplitude than 199 

the real one. Therefore, in this section, we explore the consequences of subtracting from the 200 

observations that part of the temperature variability that can be attributed to the natural modes of 201 

climate (ENSO, PDO and SAM). We regress the detrended temperature time series on the 202 

detrended ENSO index for each grid box separately. The slope of the regression is ENSO signal 203 

or fingerprint. This signal is removed from the observations and control simulations by subtracting 204 

the trend in the ENSO index times the ENSO signal [Bhend and von Storch, 2009, Barkhordarian 205 

et al, 2013]. The normalized climate indices are from ECA&D (European Climate Assessment and 206 
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Datasets). 207 

As shown in Fig. 3 (left column) if the signals of these three climate modes are removed, the 208 

observed cooling trends in Tmax disappear over Ecuador, Colombia, the Andes of Bolivia, and 209 

northern Chile. The study by Falvey and Garreaud (2009) also partially attributed the observed 210 

cooling along the west coast of SA to the Pacific decadal variability. Vuille et al., (2015) also 211 

shows that the coastal cooling is consistent with the observed PDO fingerprint. Loikith et al., 212 

(2017) demonstrates that ENSO is highly influential on the occurrence of extreme temperature 213 

months over coastal northwestern SA and that over Patagonia, the SAM is highly influential during 214 

spring and fall. According to Figure 3 (right column) in the wet seasons (DJF and MAM), the trend 215 

in Tmax after removing the fingerprint of the climate modes remained distinguishable in a few 216 

grid cells, indicating that the three natural modes of variability explain a substantial portion of 217 

Tmax variability in wet seasons. However, in the dry seasons (JJA, SON) the observed warming 218 

trends over northern SA are robust against removing the signal of the three natural climate modes 219 

(Figs 3 and 4, right column). We note that natural modes of variability such as ENSO and PDO 220 

might themselves be affected by greenhouse gas and aerosols emissions. Thus, in future work we 221 

will attempt to distinguish whether the trends in natural modes are themselves forced by external 222 

forcing or whether they are the results of internal variability alone that are underestimated by 223 

GCMs.  224 

The results obtained indicate that the warming in Tmin and Tmax for JJA and SON over the 225 

northern SA exceeds the limits of natural (internal) variability. These results are robust against the 226 

removal of the fingerprint of the ENSO, PDO and SAM. That is, externally forced changes are 227 

robustly detectable (at 2.5% level). In the following, we assess whether the observed trends, which 228 

are found to be inconsistent with natural (internal) variability, are consistent with what climate 229 

models simulate as the response of daytime (Tmax) and nighttime (Tmin) temperature to 230 

anthropogenic forcing.  231 

4.2. Attribution of observed trends to anthropogenic forcing 232 

Having established that externally forced changes are detectable in the observed record of Tmax 233 

and Tmin, we determine in a second step whether these results are consistent with what climate 234 

models simulated as expected response to anthropogenic forcing. This continent accounts for an 235 

estimated 15% of global fire emissions of carbon from landscape fires and open biomass burning 236 
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(van der Werf et al., 2010), with regional hotspots of fire activity around the edges of Amazonia. 237 

Therefore, in what follows we use GS, GHG, AA1 and AA2 simulations to identify the primary 238 

drivers of observed trends of Tmin and Tmax over SA. The comparison is carried out using spatial 239 

correlation statistics and regression between the trend spatial patterns (for more details, see 240 

Barkhordarian et al. [2012b]). 241 

In SON, the correlation between the observed trend pattern and the GS (Greenhouse gas and 242 

Sulfate aerosols, GS) response pattern derived from each of the 30 GCMs (Sup. Table 1) is in the 243 

range of [0.72, 0.87], while that with the GS response pattern derived from CORDEX RCM is 244 

0.88. The correlation with the historical GHG response pattern is 0.87. These correlations are 245 

larger than the 97.5th %tile distribution of correlation coefficients between 600 patterns of unforced 246 

trends and the anthropogenic signal patterns. The correlation between the observed trend pattern 247 

and the AA1 response pattern is 0.70. However, there is a negative correlation with the AA2 248 

response pattern. This difference in correlations indicates that the observed trends are distinct from 249 

the predicted response to aerosols in simulations that do not include the cloud-lifetime effect. 250 

Also, in JJA the observed trend pattern shows a relatively high positive correlation with the 251 

anthropogenic signal patterns. This correlation is in the range of [0.70, 0.85] with the 30 GS 252 

response pattern, 0.80 with regional GS response pattern, and 0.81 with historical GHG response 253 

pattern. These coefficients are also larger than the 97.5th %tile distribution of the correlations 254 

derived from control runs. Indeed, such correspondence can hardly be expected to accrue if the 255 

effect of anthropogenic forcing where not present in the observed record.  256 

Figure 5 displays the seasonal regression indices and the 97.5th %tile uncertainty range derived 257 

from fits of the regression model to 600 control run segments derived from 20,000-year control 258 

simulations. The quantiles of the regression indices (R) of control run segments onto the 259 

anthropogenic climate change signal patterns (GS, GHG, AA1, AA2) are used to test the 260 

Hd hypothesis that the distribution of regression indices is only due to internal variability. This 261 

hypothesis can be rejected at the prescribed level of significance if the 97.5th %tile uncertainty 262 

range does not include “zero”. When there is insufficient evidence to reject Hd, and the 97.5th %tile 263 

uncertainty range includes “unity”, the consistency of observed changes to the respective forcing 264 

is claimed (Barkhordarian et al., 2016).  265 
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As shown in Figure 5 in JJA and SON the uncertainty interval of R does not include zero, but 266 

includes unity in the case of all 30-global projected GS signals (black bars), one-regional projected 267 

GS signal (green bar) and the simulated GHG signal (blue bars). Therefore, as the regression 268 

indices within all the 30 GS and GHG signal patterns are significantly greater than zero and 269 

compatible with a value of unity, we conclude that the large-scale component of GHG (GS) signal 270 

is compatible (with less than 2.5% risk of error) with the observed positive trends of Tmax in dry 271 

seasons.  272 

Aerosols-only forcing simulations without the “cloud lifetime effect” of aerosols (AA2) display 273 

near zero or negative regression indices in all seasons (purple bars in Fig 5). However, AA1 274 

simulations that include the aerosol-radiation-cloud’s lifetime interactions, yield regression indices 275 

significantly greater than zero in JJA and SON (red bars in Fig 5), indicating that including the 276 

second indirect effect of aerosols on cloud’s lifetime yields results that are more compatible with 277 

the observed record.  278 

4.3. Surface Solar radiation (indirect effect of aerosols) 279 

The sum of the direct and diffuse shortwave radiation reaching the surface is denoted as Surface 280 

Solar Radiation (SSR). At decadal time-scale regional SSR changes are mostly the result of 281 

changes in atmospheric transparency due to changes in cloud and/or changes in the anthropogenic 282 

aerosols. Anthropogenic aerosols exert both a direct (clear-sky scattering of solar radiation) and 283 

indirect (impact on cloud microphysical and radiative properties) effect on climate. These effects 284 

are associated with large uncertainties in climate simulations [Forster et al., 2007]. The most 285 

important factor of this uncertainty is the complex interactions between aerosols and clouds [e.g. 286 

Lohmann and Freichter, 2005]. To our knowledge, no study exists that assesses the consistency of 287 

observed SSR trends with climate change projections over SA.  288 

The analysis of satellite SSR data indicates a positive trend in warm seasons (SON, DJF) that is in 289 

on order of +5.3 W/m2/decade in SON over northern SA. In contrast, trends are negative in cold 290 

seasons (MAM, JJA). A strong solar dimming in the order of -6 W/m2/decade is observed in cold 291 

seasons over southern SA. The range of changes of solar radiation solely due to natural climate 292 

variability, derived from the 20,000-year pre-industrial simulations, indicate that observed trends 293 

of SSR over SA cannot be explained by natural (internal) variability alone (at 2.5% level). Regions 294 
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where the observed trends are significantly larger than zero are shown in Figure 7 (left column). 295 

Therefore, we conclude that there are external drivers at work in the observed record of solar 296 

radiation reaching the surface.  297 

In contrast to the large trends in the observations, climate change projections based on RCP4.5 298 

scenario simulate very small trends in all seasons as a response of SSR to GHG forcing (Fig 7, 299 

right column). It is likely, therefore, that an additional external forcing is required to explain the 300 

discrepancy. For example, the regionally changing anthropogenic aerosol loading in the 301 

atmosphere may contribute to determine the observed SSR trends. 302 

4.4.  Dependence on the Period Selected to Calculate Trends  303 

In this subsection, we investigate how dependent our results are on the exact time period selected 304 

for analysis. Figure 8 shows the seasonal regression indices of moving 30-year trend patterns of 305 

Tmax and Tmin based on CRU over 1952-2012 onto the ensemble mean GHG response pattern. 306 

The gray shaded area indicates the 97.5th %tile distribution of regression indices, derived from 307 

control simulations, onto the ensemble mean GHG response pattern. Detection of an GHG signal 308 

can be claimed in those cases where the gray shaded area in Fig 8 excludes zero while consistency 309 

with GHG signal pattern is claimed in cases where the gray shaded area does not include zero but 310 

includes unity.  311 

As shown in Fig. 8 (first row) for Tmax in JJA and SON, the gray-shaded area does not include 312 

the zero line but includes a regression coefficient equal to unity for 30-year trends over period 313 

ending in 2000 and later. This indicates the emergence of a compatible GHG influence in daily 314 

maximum temperature trends in dry seasons in the 21st century. However, in the wet seasons (DJF, 315 

MAM) the regression indices are either negative or not significantly greater than zero.  For Tmin 316 

Fig. 8 (second row) shows that the effect of GHG signal is compatible with observations in DJF, 317 

JJA and SON in 30-year trends over period ending in 1997 and later.  318 

We further assess the seasonal regression indices of observed moving 30-year trend pattern of 319 

Tmax and Tmin, over the period 1952–2012, onto the anthropogenic aerosols (AA1) response 320 

pattern. As shown in Figure 9, for Tmax in JJA and SON, and for Tmin in SON the gray-shaded 321 

area does not include the zero line but includes unity for 30-year trends over period ending in 2008 322 

and later. This indicates that the effect of aerosols is compatible with observations in 30-year trends 323 
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over period ending in 2008 and later. Major sources of aerosols over Brazil are the burning of 324 

biomass [Rosário et al., 2013]. Brazil stands out in terms of biomass burning, with 325 

approximately 190,000 points of detection of fires in 2010, with most of these points occurred 326 

in the southern part of the Amazon basin during the dry season (July- November) 327 

[CPTEC/INPE (http://www.cptec.inpe.br); Mariano et al., 2014].  328 

5. Discussions and conclusions   329 

In this study, we investigate whether the climate over South America has changed because of 330 

human activity since the beginning of the industrial revolution. We also examine to what extent 331 

the recently observed changes in daily minimum and daily maximum temperature are consistent 332 

with climate change AR5 projections. In the first step of our methodology, we assess whether the 333 

observed changes can be explained as due to natural (internal) variability alone, and if not, whether 334 

they are consistent with what models simulate as response to anthropogenic forcing.  335 

Our results indicate that, over the past decades, observed warming trends in Tmin and Tmax in the 336 

dry seasons (JJA, SON) over northern SA cannot be explained by natural (internal) variability 337 

alone and that externally forced changes have an influence (at the 2.5% level) on the observed 338 

warming trends. The detection of externally forced changes in Tmin and Tmax in the dry seasons 339 

are robust against the removal of the fingerprint of the three natural modes. However, in the wet 340 

season, the natural modes of variability explain a substantial portion of Tmax and Tmin variability.  341 

The pattern correlation and regression analyses clearly capture the concerted emergence of 342 

greenhouse gas (GHG) signal in the 21st century. The detection of GHG effect is largely 343 

independent of the choice of model from which we drive the expected climate change signal. 344 

However, none of the global and regional climate change projections, used in this study, reproduce 345 

the observed warming of up to 0.6 K/Decade in Tmax over 1983-2012 over northern SA in austral 346 

spring (SON). Thus, we conclude that besides the regional manifestation of GHG forcing and 347 

assuming that the GHG response is correctly simulated, other external drivers have an imprint. 348 

This conclusion is strengthened when computing the diurnal temperature range (DTR = Tmax minus 349 

Tmin), which is a relevant indicator of climate change due to the asymmetry between maximum 350 

and minimum temperature response to anthropogenic forcing [Braganza et al., 2004]. Several 351 

studies highlight a significant decreasing trend in the DTR over the last 50 yr at global scale [see 352 

Vose et al., 2005 and references therein]. The large increase of minimum daily temperatures 353 
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compared to a much smaller enhancement of maximum temperatures over land is responsible of 354 

such global DTR changes. Nevertheless, over South America the CRU observed record indicates 355 

that DTR is increasing in dry seasons and decreasing in wet seasons. The increasing trend in DTR 356 

of almost +0.03 K/decade in SON and JJA over 1983-2012 indicates a faster increase in Tmax 357 

than Tmin. Climate models underestimate the observed trends in DTR because of underestimating 358 

the observed daytime warming amplification. It is notable that if an increased GHG were a 359 

significant driver of the observed warming over SA, we would expect to see nights warming faster 360 

than days. The opposite results obtained here could indicate that although GHG is the dominant 361 

driver of Tmin, other external forcing than GHG have an imprint in observed Tmax and is 362 

responsible for the daytime warming amplification over northern SA. 363 

Using aerosols-only forcing simulations with and without the second indirect effect of aerosols, 364 

our results provide evidence that anthropogenic aerosols also have a detectable influence in SON 365 

and that the indirect effect of aerosols on cloud’s lifetime is more compatible with the observed 366 

record.  367 

We further show a positive trend in the incoming solar radiation over the northern SA in SON that 368 

cannot be explained by natural (internal) variability alone and that this trend is distinct from the 369 

expected response to GHG forcing. The study by Hodnebrog et al., (2014) demonstrates that the 370 

forcing due to the increased black carbon emissions and a shorter black carbon (BC) lifetime, 371 

leaves the direct aerosol effect of BC virtually unchanged. However, it has a side effect 372 

diminishing the fraction of low cloud cover over a zonal band from Equator to 15°S (Hodnebrog 373 

et al., 2014). Given that the emission of anthropogenic sulfate aerosols (SO2) over SA is almost 374 

constant (See Sup. Fig. 3), and that the emissions of black carbon are increasing during the dry 375 

seasons [van der Werf et al., 2010], we suggest that the positive trend in incoming solar radiation 376 

could partly be attributed to changes in clouds due to radiatively absorbing aerosol. This effect 377 

increases the net short-wave radiation reaching the surface by reducing cloud cover, producing a 378 

daytime warming amplification and consequently increasing diurnal temperature range observed 379 

over SA in the last decades. In global scale, fossil fuel black carbon is found to have a detectable 380 

contribution to the near-surface warming over the last 50yr of the 20th century (Jones et al., 2011). 381 

We note that, there is another important driver active in this region, namely land-cover change, 382 

which is not consider in the present study.  383 
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We further show that in dry seasons the spread of projected trends based on the RCP4.5 scenario 384 

derived from 30 CMIP5 models encompasses the observed area-averaged trends in Tmin and 385 

Tmax. This may imply that the observed excessive warming in dry seasons serve as an illustration 386 

of plausible future expected change in the region. 387 
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388 

Figure 1:  Observed area averaged changes in daily maximum temperature (Tmax) over the period 389 

1983–2012 (grey bars) in comparison with 30 global climate change projections estimated from 390 

time slices experiment (2071-2100 minus 1961-1990), RCP4.5 scenario (GS, brown bars), one 391 

regional climate change projections (GS, green bars), the historical GHG forcing only simulations 392 

over 1983-2012 (GHG, blue bars), the historical aerosols forcing only simulations with (AA1, red 393 

bars), and without (AA2, purple bars) the “cloud lifetime effect” of aerosols. The vertical axes 394 

show the area averaged change of Tmax. The black whiskers indicate the spread of trends of 395 

simulations. The red whiskers indicate the 97.5th %tile uncertainty range of observed trends, 396 

derived from 20,000-year control runs. Units are K per Decade. 397 
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 398 

Figure 2: Same as Figure 1, but for daily minimum temperature (Tmin). The vertical axes show 399 

the area averaged change of Tmin. 400 

  401 

 402 
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 403 

Figure 3: left column: Seasonal observed trend of daily maximum temperature (Tmax) over 1983-404 

2012-time period based on CRU dataset. Middle column: Areas where externally forced changes 405 

are detectable (at 2.5% level) in the observed record of Tmax, based on 20,000-year control 406 

simulations. Right column: Areas where the detection of externally forced changes is robust 407 

against removing the fingerprint of three natural modes (ENSO, PDO and SAM). 408 

  409 
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 410 

 411 

Figure 4: Same as Figure 3, but for daily minimum temperature (Tmin).  412 

  413 
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 414 

Figure 5:  Seasonal regression indices of observed trend pattern of daily maximum temperature 415 

against the 30-global projected GS signal patterns (black bars), against 1 regional projected GS 416 

signal pattern (green bar) the simulated GHG signal pattern (blue bar), the simulated anthropogenic 417 

aerosols signal patterns with (red bar) and without (purple bars) the “cloud lifetime effect”. The 418 

97.5th %tile uncertainty range of regression indices is derived from 20,000-year pre-industrial 419 

control simulations from CMIP5 archive. The vertical axes show regression indices.  420 
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 421 

 422 

Figure 6: Same as Figure 5, but for daily minimum temperature (Tmin).  423 

 424 

 425 

 426 
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 427 

Figure 7: left column: Seasonal observed patterns of change in surface solar radiation (SSR) 428 

according to the CDR satellite data. Displayed trends are significantly greater than zero (at 2.5% 429 

level). Missing grid cells indicate regions where the observed trend lies within the range of trends 430 

solely due to natural (internal) variability, based on long control simulations. Right column: GS 431 

(Greenhouse gas and Sulfate aerosols, GS) signal pattern estimated from time slices of climate 432 

projection 2071-2100 minus 1961-1990 mean scaled to change per decade) according to the 433 

RCP4.5 scenario. Unites are W/m2/Decade.  434 

 435 

 436 

437 
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 438 

Figure 8: First (second) row seasonal regression indices of observed moving 30-year trend pattern 439 

of Tmax (Tmin), over the period 1952–2012, onto the ensemble mean GHG response pattern. The 440 

vertical axes denote the regression indices. The horizontal axes show the end-year of moving 30-441 

year trends. The grey shaded area indicates the 97.5% range of regression indices in a stationary 442 

climate derived from 600 non- overlapping control run segments. The dotted lines mark regression 443 

indices equal to unity, and the solid lines mark regression indices equal to zero. Detection of a 444 

GHG signal can be claimed in those cases where the gray shaded area excludes “0” and consistency 445 

with GHG signal pattern is claimed in cases where the gray shaded area does not include “0” but 446 

includes “1”. 447 
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 448 

Figure 9:  First (second) row seasonal regression indices of observed moving 30-year trend pattern 449 

of Tmax (Tmin), over the period 1952–2012, onto the AA1 response pattern. The vertical axes 450 

denote the regression indices. The horizontal axes show the end-year of moving 30-year trends. 451 

The grey shaded area indicates the 97.5th %tile range of regression indices in a stationary climate 452 

derived from 600 non-overlapping control run segments. The dotted lines mark regression indices 453 

equal to unity, and the solid lines mark regression indices equal to zero. Detection of an 454 

anthropogenic aerosol signal can be claimed in those cases where the gray shaded area in Fig 8 455 

excludes “0” and consistency with AA1 signal pattern is claimed in cases where the gray shaded 456 

area does not include “0” but includes “1”. 457 
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