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Abstract

The upscaling problem is investigated using the barotropic dynamics of the

North Sea and the German Bight as an example. The impact of small scale

perturbations of bathymetry, bottom roughness, wind forcing, and boundary

forcing is quantified using a two-dimensional linear barotropic model for the en-

tire North Sea with 5 km resolution. The model is solved in the spectral domain

for the dominant M2 tide. Comparisons with results from a fully nonlinear 3D

circulation model show that the main circulation features are well captured by

the spectral model. The impact of different types of perturbations is estimated

by inversion of the model using the perturbation covariance matrix as input.

Case studies with white noise and fully correlated noise are presented. It is

shown that the German Bight area stands out in its sensitivity with respect to

small scale uncertainties of bathymetry. Small scale changes of bottom rough-

ness have a particularly strong effect in the English Channel. Small scale wind

perturbations have a significant local effect only in very shallow near coastal

areas. It is shown that uncorrelated noise introduced along an open boundary

around the German Bight only has a very local effect. Perturbations with long

correlation length are shown to lead to significant far field effects along the east

coast of England. It is demonstrated that this effect is related to the boundary

conditions used for the North Sea model. In a next step a German Bight grid
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with 1 km resolution is nested into the North Sea grid and the spectral model

is solved in a two way nested configuration. It is shown that there are some

significant local and far field effects caused by the change of resolution in this

coastal area. Finally, the potential impact of observations taken in coastal ar-

eas is investigated by evaluating the Kalman a posteriori distribution of analysis

vectors based on different assumptions about model errors. The area of influ-

ence of a single tide gauge is quantified for the case where the model errors are

dominated by boundary forcing errors. The results show a strong dependence

on spatial correlation properties of the errors.

Keywords: Upscaling, Ocean model, tides

1. Introduction

There is an increasing number of coastal observatories becoming operational

worldwide (Kourafalou et al., 2015; Stanev et al., 2011; Riethmüller et al., 2009;

Howarth and Palmer, 2011; Bolaños et al., 2009). This development is in par-

ticular driven by the growing need for information on coastal processes rele-5

vant for the planning and management of human activities like, e.g., offshore

wind farming. At the same time, big efforts are made in different parts of the

world to setup operational models for the regional scale. For example, in Eu-

rope these activities are now organised in the framework of the COPERNICUS

program (http://www.copernicus.eu/), which ensures that consistent regional10

model forecasts are provided for all European coastal areas.

Regional models, like the North West Shelf model used in COPERNICUS,

are not able to resolve all relevant coastal processes. Downstream services for

user groups interested in coastal information usually require higher spatial res-

olution. The usual approach to solve this problem is a nested setup, where a15

high resolution coastal model is coupled to a coarser model (also called“parent

model”) using either one-way or two-way coupling methods (Barth et al., 2005).

Alternatively, unstructured grid models are used to realize a seamless transition

between different spatial scales (Zhang et al., 2015). Due to the high computa-
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tional costs, the use of these models for operational applications is still limited20

up to now.

Also, the assimilation of observation data usually requires the use of high

resolution models, because a lot of the small scale processes, e.g., monitored by

HF radar systems (Paduan and Washburn, 2012; Stanev et al., 2015), cannot be

reproduced by regional scale models. To make best use of coastal observations25

and to improve both coastal and regional scale forecasts different aspects of

nested model coupling require detailed analysis.

The problem becomes evident looking at the case of the North Sea and the

German Bight as an example. For the entire North Sea operational regional

model forecasts with about 5 km spatial resolution are available either from the30

COPERNICUS system or the system run at the Federal Maritime and Hydro-

graphic Agency (BSH) (Dick et al., 2001). At the same time, a large variety

of observations is available in the German Bight provided by the Coastal Ob-

serving System for Northern and Arctic Seas (COSYNA) (Stanev et al., 2011).

The system includes observations with large coverage and high spatial resolu-35

tion, like HF radar (Stanev et al., 2015), as well as detailed observations of the

vertical structure, e.g., by gliders (Merckelbach, 2013).

At the very beginning of the present study we want to address the used

terminology. In flow physics the distribution of energy over different spatial

and temporal scales is not only determined by the forcing, but also to a large40

extent by the re-distribution of energy due to non-linear interaction processes

(Nastrom et al., 1984). One important question is whether intermediate scales

(in our case regional scales) obtain their energy from a large-scale motion (e.g.,

Kelvin wave) or from small-scales (e.g., coastal processes, which are largely tur-

bulent). It is usually accepted that larger scale eddies disintegrate into smaller45

ones, dissipating their energy into smaller length scales. At the smallest length

scales, the viscosity becomes important and the energy dissipates into heat.

In the theory of 2D turbulence (Kraichnan, 1967) an inverse energy cascade is

supported (from small to large scales). While 2D flows do not transfer energy

downscale, the 3D turbulence does not support an upscale energy transfer. In50
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the above description of the basic flow dynamics up-and-down-scale transfer is

understood as transfer of energy to larger or smaller scales. This sometimes

leads to a spectral condensation and enhancement of motion at specific scales

coherent over the entire domain or part of it (Sommeria, 1986). It is also known

that systems with long memory (the ocean) integrate stochastic forcing, thereby55

transforming a white-noise signal into a red-noise one (Hasselmann, 1976).

In meteorology and oceanography under downscaling, one understands a

procedure to take information known at large scales to make predictions at lo-

cal scales. Dynamical downscaling implies using a high-resolution model in a

sub-domain forced at its boundaries by output from a lower-resolution model.60

Statistical downscaling necessitates the development of statistical relationships

between local variables (e.g., SST) and large-scale predictors (e.g., atmospheric

pressure). In a second step these relationships are applied to the output of

large-scale models to reconstruct local variables. Both approaches result in

fine resolution predictions in limited areas. Obviously, it is not straightforward65

to define upscaling in atmospheric and ocean science as exactly the opposite to

downscaling. Therefore, we will be following the ideas developed in fluid dynam-

ics and will consider upscaling as a process in which information is transferred

from a smaller scale to a larger scale. If this concept is applied to the spatial

dimension, one can define a separation length scale ssep and study the impact70

of processes with correlation length less than ssep on processes with correlation

length larger than ssep. This aspect will be treated in this study to some extent,

but the definition for upscaling used here is a little bit wider and more tailored

to the problem of matching the coastal and regional scale in ocean modelling.

In particular, we will study the large scale impact of signals originating either75

from boundary forcing along a coastal domain or from near shore measurements.

We will also investigate the impact of perturbations introduced into the model

at the smallest resolved scale, i.e., white noise. These different aspects of the

upscaling problem are analysed using the tidal dynamics in the North Sea and

the German Bight as an example. We have concentrated on the barotropic part80

because this allows a quite rigorous statistical treatment of the problem.
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The North Sea is a shallow shelf sea with mean water depth of 80 m and

a maximum depth of about 800 m (in the Norwegian Trench). An overview

map of the north west shelf area with the North Sea and its surrounding seas

is shown in Fig. 1 a. The dashed line indicates the 200 m isobath. The tides85

in the North Sea are triggered by the Atlantic semidiurnal Kelvin wave, which

travels from south to north along the continental shelf. Energy is transmitted

across the shelf edge into the Celtic Sea between Brittany and southern Ireland.

This wave then propagates into the English Channel where some of the energy

is passed on into the southern North Sea through the Dover strait. The Atlantic90

wave progresses northwards, taking five hours to travel from the Celtic Sea along

the continental shelf to the Shetlands where it feeds more energy into the tidal

dynamics of the North Sea (e.g., Pugh (1996)). A more detailed map of the

North Sea with some geographical locations mentioned in the text is shown in

Fig. 1 b. Overviews of the full three dimensional North Sea dynamics and more95

information on tides can be found in Sündermann and Pohlmann (2011); Otto

et al. (1990); Andersen et al. (2006).

Perturbations on the coastal scale can be introduced by either observations,

which are used in an assimilation system to modify the state inside the coastal

model, or by modifications of parameters in the coastal model. In both cases100

an important question is how the radius of impact depends on the type of per-

turbation and the setup of the nested system. In this study we will concentrate

on the following questions:

• What is the effect of small scale perturbations of model variables (e.g.,

bathymetry or bottom roughness) on the regional scale ?105

• What is the effect of perturbations applied in coastal areas on the regional

scale ?

• How do these effects depend on correlation properties of the perturbation

?

• How do these effects depend on the boundary conditions used for the110
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regional model ?

To keep the analysis simple and to allow a rigorous statistical treatment,

the study employs a linear two dimensional (2D) barotropic model. The main

advantage of this approach is that sensitivity experiments can be performed

without the need of Monte Carlo runs like, e.g., used in Mourre et al. (2004). Sta-115

tistical parameters can be computed directly from the governing Navier Stokes

equations making appropriate assumptions about variance and correlation prop-

erties of the perturbations. Data from a nonlinear 3D circulation model were

used to provide realistic boundary forcing.

It should be noted that other tools exist to perform sensitivity studies like120

presented here. For example, the Regional Ocean Modeling System (ROMS)

(Shchepetkin and McWilliams, 2005), which resolves the full nonlinear three-

dimensional barotropic and baroclinic dynamics, comprises inverse models

(Di Lorenzo et al., 2007; Moore et al., 2004), which have been successfully used

for sensitivity assessments and data assimilation in previous studies (Moore125

et al., 2009; Veneziani et al., 2009).

There are a couple of reasons, why we decided to use a simpler linear model

approach in our analysis. First of all, we are dealing with small perturbations

in this study, for which linear approximations usually work quite well. This is

nicely demonstrated by the successful use of adjoint models, which represent130

linear approximations as well. Secondly, the model used here allows a clear sep-

aration of the impact on the tidal dynamics without the need to consider issues

like model spinup or spectral estimation errors associated with finite model run

periods. Furthermore, the model is simple enough to allow a complete descrip-

tion of the underlying equations and parameters in the text. The basis for the135

study is therefore very clear and allows a re-production of results by readers.

Finally, the used model is computationally efficient and very flexible. This be-

came particularly evident, when we were able to use the approach to solve a

nested two-way coupled problem in a very straightforward way.

The paper is structured as follows. In section 2 the linear model used for the140
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analysis is introduced. In section 3 some general results about the density, the

flux, and the dissipation of energy are presented. Section 4 is about the general

approach of the sensitivity analysis using the inverse model. In section 5 this

method is applied to study the large scale impact of white noise perturbations

introduced into the model. This is followed by an analysis of the effect of145

boundary forcing perturbations added along the German Bight boundary in

section 6. In section 7 a coarse resolution North Sea model is two-way coupled

to a high resolution German Bight model using the linear model. Results with

and without nesting are compared. Section 8 is about the large scale impact of

observations taken in a coastal area followed by conclusions in section 9.150

2. Numerical Models used

In this section the numerical models and model data used in this study are

introduced. We will start with the linear model, which is used as a basis for the

statistical analysis. The most important approximations are mentioned and the

numerical method to solve the equations is explained. This model was run on155

a grid covering the entire North Sea and a second grid with higher resolution

covering only the German Bight as depicted by the two rectangles in Fig. 1 a.

Note that the latter grid actually covers a bit more than the geographical area of

the German Bight, but this is the domain used in the BSH coastal model (Dick

et al., 2001), and we will refer to it as the German Bight grid for simplicity.160

The respective bathymetries are shown in Fig. 2. The North Sea grid has 5 km

resolution and the German Bight grid has 1 km resolution. The grid dimensions

are 159×237 for the coarse grid and 210×287 for the fine grid. Both grids are

also used in the operational BSH system (Dick et al., 2001).

The linearised Navier Stokes equations in two dimensions read (e.g., Maier-165
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Reimer (1977))

∂ζ

∂t
+

∂U

∂x
+

∂V

∂y
= 0 (1)

∂U

∂t
− f V + g h

∂ζ

∂x
+ τxbott = λW

√

U2
10

+ V 2
10

U10 (2)

∂V

∂t
+ f U + g h

∂ζ

∂y
+ τybott = λW

√

U2
10

+ V 2
10

V10 , (3)

where g denotes gravitational acceleration, f is the Coriolis parameter, h is

water depth, and ζ is water elevation. U and V denote the transport, i.e,

U = h u and V = h v, where u and v are the vertical mean current speeds

in zonal and meridional direction. U10 and V10 are the zonal and meridional170

wind speed components at 10 m height and λW is the wind drag coefficient.

For the most part of the study we will concentrate on the pure tidal dynamics

and analyse the momentum equations with λW = 0. For the studies including

wind forcing we have used λW = 3.2 · 10−6 following Backhaus (1976). For the

bottom friction terms τxbott, τ
y
bott the standard quadratic expression is given as175

(Maier-Reimer, 1977; Backhaus, 1976)

τxbott = r
√

u2 + v2 u (4)

τybott = r
√

u2 + v2 v (5)

with vertical mean current speeds in zonal and meridional direction u, v and

bottom friction coefficient r. To linearise these expressions an average of the

square root factor was estimated by assuming that the dynamics is dominated by

one tidal constituent. For the North Sea, which is dominated by the semidiurnal

M2 tide, this is a reasonable assumption. If the respective amplitudes for u and

v are given by au and av, we have

〈u2+ v2〉 =
1

2π

∫ 2 π

0

a2u cos
2(ϕ−ϕu)+a2v cos

2(ϕ−ϕv) dϕ =
1

2
(a2u+a2v) , (6)

where ϕu and ϕu are the respective phase offsets. If the square root in eqs. 4,5

is linearised around this mean values and once again averaged over one tidal

cycle, one gets

〈
√

u2 + v2〉 ≈

√

1

2
(a2u + a2v) , (7)
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and the bottom stress terms can thus be approximated as

τxbott ≈
r

h

√

1

2
(a2u + a2v) U (8)

τybott ≈
r

h

√

1

2
(a2u + a2v) V . (9)

Values for the amplitudes au and av can be obtained either from a reference

run or using an iteration scheme as explained later on. A value of r = 0.0025

as in Maier-Reimer (1977) was used for the friction coefficient. For brevity we

will use the definition

r1 = r

√

1

2
(a2u + a2v) (10)

in the following.

As a next step, a complex periodic ansatz for the three prognostic variables

is used (Provost et al., 1981; Barth et al., 2009), i.e.,180

ζ(x, y, t) = ζ̂(x, y) e−i ω t

U(x, y, t) = û(x, y) e−i ω t

V (x, y, t) = v̂(x, y) e−i ω t . (11)

Here, ω is a given angular tidal frequency, t is time, i is the imaginary unit,

ζ̂, û, v̂ are the complex Fourier coefficients for elevation and the two velocity

components, and x, y denote the zonal and meridional coordinates. Using these

definitions, the continuity and momentum equations can be rewritten as

−i ω ζ̂ +
∂û

∂x
+

∂v̂

∂y
= 0 (12)

−i ω û− f v̂ + gh
∂ζ̂

∂x
+

r1
h
û = λW Û10 (13)

−i ω v̂ + f û+ gh
∂ζ̂

∂y
+

r1
h
v̂ = λW V̂10 , (14)

where Û10 and V̂10 are the complex Fourier coefficients associated with the ω185

frequency component of the wind forcing terms in eqs. 2 and 3.

It is important to emphasize that these equations refer to the tidal dynamics

only. In reality, additional driving mechanisms exist, which are associated with
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ocean waves, or density gradients. Due to nonlinear terms in the dynamical

equations (e.g., bottom friction) complex interactions occur (Hashemi et al.,190

2014). However, in this study the focus is on a first order sensitivity analysis,

in which higher order coupling processes can be neglected. The integration

of additional physical processes into the analysis will be the subject of future

studies.

This system of eqs. 12-14 was discretized on a standard Arakawa C-grid

resulting in the following complex banded linear system of dimension n = 3nw

A x = b , (15)

where nw is the number of wet points. Here, A is a banded complex matrix of195

dimension n× n, and b is a complex vector of dimension n, which contains the

open boundary forcing, the meteo forcing, and zeros. The vector x represents the

model state and contains the complex amplitudes of the two velocity components

û, v̂ and the elevation ζ̂. The linear system was solved using the routine ZGBSV

provided by the FORTRAN LAPACK library. For the North Sea domain one200

gets n=113049 and for the German Bight domain we have n=243810.

The system was first solved for the M2 tidal component with angular fre-

quency

ωM2 =
2π

12.42 hrs
. (16)

The North Sea bathymetry shown in Fig. 2 a was used for the first experiments.

Clamped boundary conditions were imposed for the open boundaries in the

English Channel, the Skagerrak and along the boundary to the Norwegian Sea.

The required M2 amplitudes and phases were estimated from output of the205

operational BSH model (Dick et al., 2001). This circulation model is three-

dimensional and takes into account meteorological forecasts for the North Sea

and Baltic Sea provided by the German Weather Service (DWD), tides and

external surges entering the North Sea from the Atlantic, as well as river runoff

from the major rivers. One year of half-hourly output of waterlevels was used210

to estimate complex M2 tidal coefficients at the open boundaries.

10



To deal with the bottom friction term in the momentum eqs. 13,14 a simple

fixed-point iteration scheme was applied. The linear system was first solved

using a first guess for au and av (au = av = 1 ms−1). Then the resulting

amplitudes for u and v were used to solve the system again. This procedure215

was repeated until convergence occurred. Typically, the velocity field updates

dropped below 1 mm/s within 30 iterations. It has to be pointed out that this

method does not provide a complete treatment of nonlinear bottom friction

processes. In particular, this approach is not able to generate higher harmonics,

seen in fully nonlinear models, because the phase information in the nonlinear220

term is dropped.

Fig. 3 shows a comparison of the phase and amplitudes computed with the

linear model with the respective values estimated from the operational BSH

model. As one can see, the main features like, e.g., the position of the two

amphidromic points and the distribution of energy, are well captured by the225

linear model. There are some differences in the amplitudes visible, in particular

along the English coast and in the German Bight, but overall these results show

that the linear model is well suited for sensitivity studies, which concentrate on

first order mechanisms.

3. Density, Fluxes and Dissipation of Energy230

In this section a short overview of some of the general features of the tidal

North Sea dynamics in terms of energy fluxes and dissipation is given. It has

to be emphasized that the flux and dissipation values obtained with the linear

model have to be regarded as rough estimates. The objective here is to give a

qualitative picture of the general dynamics.235

The energy density per unit area, averaged over one tidal cycle, is given by

E = 0.25 ρ (g |ζ̂|2 +
1

h
(|û|2 + |v̂|2)) , (17)

with sea water density ρ. This expression contains both the potential energy

associated with surface elevations and kinetic energy due to currents. Fig. 4
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a shows a map of energy density estimated from the linear model. One can

see that the highest values are observed along the English east coast and the

English Channel. Although the energy is significantly smaller in the German240

Bight, it still exceeds the low values observed in the central and north eastern

North Sea.

The bottom stress vector is given as (Munk, 1997)

τbott = −r1 ρ





u

v



 , (18)

where we have used the definition in eq. 10. The dissipation then follows as

ǫdiss = r1 ρ (u2 + v2) . (19)

For the dissipation, averaged over one tidal cycle, we thus get

〈ǫdiss〉 = 2−3/2 r ρ (a2u + a2v)
3/2 (20)

with tidal amplitudes for the zonal and meridional current component au, av.

Fig. 4 b shows respective dissipation values estimated from the linear model.

In this case we see the strongest values in the English Channel and along the245

south east part of the English coast. The velocity amplitudes for the meridional

and zonal currents shown in Fig. 5 indicate that this strong dissipation is

associated with large current magnitudes in those areas. The German Bight

shows the highest dissipation values in the eastern part of the North Sea. Again,

it can be seen that this is related to relatively large values for the zonal current250

component.

The energy fluxes per unit length in zonal and meridional direction, averaged

over one tidal cycle, are given by (Pugh, 1996)

Φx = 0.5 ρ g h |ζ̂||û| cos(arg(ζ̂)− arg(û)) , (21)

Φy = 0.5 ρ g h |ζ̂||v̂| cos(arg(ζ̂)− arg(v̂)) , (22)

where arg denotes the argument of a complex number. The energy flux can thus

be readily estimated from the linear model introduced in the previous section.255
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Fig. 6 shows respective vector maps for the entire North Sea (Fig. 6 a) and

a zoom into the German Bight (Fig. 6 b) with different scaling of the arrow

lengths. One can see that the strongest energy fluxes can be found along the

English east coast and in the English Channel. Both branches of energy fluxes

transport energy into the area of high dissipation seen in Fig. 4 b. The fluxes260

inside the German Bight are about one order of magnitude smaller with the

strongest flux values found in the southern part along the East Frisian Islands.

These findings are well consistent with previous studies, which were based on

three-dimensional nonlinear models (e.g., Davies and Kwong (2000)).

4. Statistical analysis using the inverse model265

In this section the basic statistical analysis method is explained, which is

employed in the following sensitivity studies. Applying parallisation techniques

and using a cluster computer it is feasible to invert the matrix A in the linear

system given by eq. 15. We can then write

x = A−1 b , (23)

which allows us to analyse the sensitivity of the barotropic North Sea dynamics

with respect to the open boundary forcing also in statistical terms. In the

following we assume that the boundary forcing is a zero mean complex Gaussian

process with prescribed variances σ2

k = 〈|bk|
2〉. The resulting covariance matrix

of the state vector is then given by

〈xxH〉 = A−1〈bbH〉(A−1)H , (24)

with superscript H denoting conjugate transpose. If we want to compute the

variance of a specific component of the state vector, we thus need the respective

line of the matrix A−1. In order to avoid storage of the entire inverse matrix,

which does not have a banded structure like the original matrix A, one can use

the identity

(A−1)T = (AT )−1 , (25)
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i.e., the rows of A−1 can be obtained as columns of the inverse of AT . These

columns can be easily computed step by step solving the linear systems defined

as

AT ci = ei i = 1, . . . , n , (26)

where ei is the ith unit vector. These systems can be solved quite efficiently

using an LU decomposition of AT (Press et al., 1992).

In the following, eq. 24 will be evaluated based on different assumptions

about the covariance matrix Q of the perturbation vector b given by

Q = 〈bbH〉 (27)

In particular, the extreme cases of perfect correlation and complete decorrelation

of the components of b will be considered.

5. Sensitivity with respect to bathymetry, bottom roughness and270

wind forcing

In this section the statistical method introduced in the previous section is

applied to analyse the sensitivity of the tidal North Sea dynamics with respect to

perturbations of the bathymetry, bottom roughness, and wind. The objective is

to analyse the respective response patterns and to identify regional differences.275

The general approach is to introduce perturbations at the smallest resolved scale

in the model (i.e., white noise) and to study the respective large scale impact.

5.1. Sensitivity with respect to bathymetry noise

It is well known that there is considerable uncertainty about the bathymetry

in the North Sea (Mourre et al., 2004). Very little is known about the spa-

tial distribution of the respective errors, because this involves many factors,

like the amount and quality of measurements, or the intensity of morphody-

namic processes. We therefore take a very simple approach and assume that

the bathymetry h is affected by additive white noise, i.e., h is of the form

h = h0 +∆h , (28)
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where ∆h is a zero mean Gaussian process and h0 is the unperturbed bathymetry.

Expanding the bottom roughness terms in eqs. 13, 14 to first order, we then280

have

−i ω û− f v̂ + gh0

∂ζ̂

∂x
+ r1û/h0 = ∆h (r1û/h

2

0
− g

∂ζ̂

∂x
) (29)

−i ω v̂ + f û+ gh0

∂ζ̂

∂y
+ r1v̂/h0 = ∆h (r1v̂/h

2

0
− g

∂ζ̂

∂y
) . (30)

Denoting the right hand sides for the u and v momentum equations with bu and

bv, one obtains for each equation

〈|buk |
2〉 = σ2

h |r1ûk/h
2

k − g
∂ζ̂k
∂x

|2 k = 1, . . . , nint (31)

〈|bvk|
2〉 = σ2

h |r1v̂k/h
2

k − g
∂ζ̂k
∂y

|2 k = 1, . . . , nint , (32)

where σ2

h = 〈∆h2〉, nint denotes the number of interior points, and ζ̂, û, v̂ are

solutions of the system eqs. 12-14. Eqs. 31,32 define the diagonal elements of285

the matrix Q (see eq. 27), which are associated with the interior points. The

remaining elements of this matrix are set to zero, because we are considering

uncorrelated noise. The statistical approach in section 4 is then applied. Fig.

7 a shows results obtained if a standard deviation (stdv) of 1 m is assumed for

the bathymetry noise. One can see that the German Bight stands out with its290

sensitivity with respect to topography errors. As expected, the shallow areas

between the barrier islands and the mainland are particularly strongly affected

by this kind of perturbations. The other sensitive areas are the Thames estuary

and The Wash bay at the English coast, as well as the Golf de Saint-Malo at

the French coast, and the Westerschelde estuary in the Netherlands (south of295

Zeeland).

5.2. Sensitivity with respect to bottom roughness noise

Lets now assume that the bottom roughness r is affected by additive noise,

i.e., we have a perturbed roughness field r1

r1 = r0 +∆r , (33)
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where ∆r is a zero mean, white Gaussian process and r0 is the unperturbed

roughness field. For the momentum equation we then have

−i ω û− f v̂ + gh
∂ζ̂

∂x
+ r0û/h = −∆r û/h (34)

−i ω v̂ + f û+ gh
∂ζ̂

∂y
+ r0v̂/h = −∆r v̂/h . (35)

Denoting the right hand sides for the u and v momentum equations again with300

bu and bv, we get

〈|buk |
2〉 = σ2

r |û/h|2 k = 1, . . . , nint , (36)

〈|bvk|
2〉 = σ2

r |v̂/h|2 k = 1, . . . , nint , (37)

where σ2
r = 〈∆r2〉, nint is the number of interior grid points, and and û, v̂ are

solutions of the system eqs. 12-14. Eqs. 36,37 define the diagonal elements of

the matrix Q (see eq. 27), which are associated with the interior points. As

in the previous section, the remaining elements of this matrix are set to zero,305

because we are considering uncorrelated noise. With this definition the method

described in section 4 is applied. The resulting stdv for the water level is shown

in Fig. 7 b. As before, the areas south and east of the barrier islands stand out

in the German Bight. In addition, we see larger variations inside the English

Channel and along the English south east coast. This is consistent with the310

strong currents and dissipation found in those areas (see Figs. 5, 4).

The effects of the roughness perturbations on the zonal and meridional cur-

rents speeds are shown in 7 c,d. One can see that a region in the English Channel

approximately between 2◦W and 1◦W stands out in both current components.

Also in the strait of Dover, along the English south east coast, and in the Ger-315

man Bight stronger impacts on the currents can be found. Compared to the

effects on water elevation the current field stdv shows features on smaller spatial

scales, i.e., a region with larger current variations can be found over the Dogger

Bank (see Fig. 1 b). The smoother appearance of the water level standard

deviations can be explained by the fact that the roughness perturbations have320

a very direct effect on the velocities through the momentum equations, whereas
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the impact on water level variations is more indirect through integration of the

continuity equation.

5.3. Impact of the coastal area

In a second set of computations the bathymetry and roughness perturbation325

were only applied at grid points with distance less than 10 km to the next land

point. This was done to study potential large scale impacts of near shore coastal

areas separately. The resulting standard deviations for water level as shown in

Fig. 8 a and b demonstrate that, for the case of bathymetry perturbations,

near land points seem to play the most important role, i.e., the additional330

perturbation of grid points further offshore only has a small impact. For the

small scale modifications of the roughness parameter larger differences are found.

In particular, in the English Channel and along the English south east coast the

roughness of grid points farther offshore is of stronger relevance.

5.4. Sensitivity with respect to meteo forcing335

In a third set of experiments it was assumed that the main model error source

is from the meteo forcing. For this case the linear system eq. 15 was solved

for both the semi-diurnal M2 component and the diurnal S1 component. The

correlation between the meridional and zonal wind component was assumed to

be zero. Fig. 9 shows results with error stdv of 1 m2s−2 for the surface friction340

term. The results for M2 are shown at the top (Fig. 9 a,b) and the results

for S1 at the bottom (Fig. 9 c,d). Plots on the left (Fig. 9 a,c) refer to the

case with meteo errors fully correlated in space and plots on the right (Fig. 9

b,d) represent the situation with white noise errors. As one can see, there are

only small differences between M2 and S1 for fully uncorrelated errors. In both345

cases the largest impacts are found in the very shallow areas along the Dutch,

German and Danish coast, as well as in the river Thames estuary and The Wash

bay. For fully correlated wind errors the spatial patterns of the resulting stdv of

water level amplitudes are very different for both spectral components. For the

M2 tide a maximum can be found in the German Bight and along the English350
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north east coast. For the S1 tide the strongest impact is seen in front of the

English Channel and the English south east coast. It has to be emphasized

that again clamped conditions were used for the open boundaries, i.e., the wind

perturbations are allowed to act only locally inside the North Sea. This means

that the waves generated by the wind are trapped and the response patterns are355

strongly influenced by the boundary conditions and the respective wavelength.

One can see that the response pattern for S1 shows a larger correlation length

than the one for M2. In particular, we have three maxima for M2 and only two

maxima for S1. This is due to the fact that shallow water waves with semi-

diurnal frequency have half the wavelength of those with diurnal frequency.360

6. Perturbations along the nested model boundary

The sensitivity analysis presented in this section is based on the assumption

that the German Bight model is nested into the North Sea model. The respective

model domains are depicted in Fig. 1. Bathymetries for both model grids are

shown in Fig. 2.365

We further assume that within this smaller region modification of the dy-

namics are applied, e.g, by

• running an assimilation system

• changing model parameters like for example roughness or bathymetry.

In a two-way nested model system these changes are fed back into the larger370

North Sea model through the respective boundary. The impact of these pertur-

bations on the North Sea model is analysed below by introducing the German

Bight boundaries as new open boundaries into the larger model. For the refer-

ence run the respective boundary values were again taken from the operational

BSH model.375

The statistical approach introduced in section 4 is applied as follows. Assum-

ing that the boundary forcing perturbations are uncorrelated, one can reorder
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the equations in the linear system eq. 15 such that 〈bbH〉 can be written as

〈bbH〉 = σ2

ob





Inob
0

0 0



 , (38)

where nob is the number of forced points along the German Bight boundary

and Inob
is the identity matrix of dimension nob. One can imagine these uncor-

related perturbations, for example, to be small scale corrections coming from

observations inside the German Bight with high spatial resolution, e.g., from an

HF radar (Paduan and Washburn, 2012; Stanev et al., 2015).380

For the case where the boundary perturbations are fully correlated we have

〈bbH〉 = σ2

ob





Onob
0

0 0



 , (39)

where Onob
is an nob ×nob matrix filled with ones. In this case one can imagine

these perturbation as large scale corrections of the tidal dynamics inside the

German Bight, e.g., adjustments of the timing or amplitude of the tidal wave.

6.1. Experiments with clamped condition at North Sea open boundary

Fig. 10 shows the resulting standard deviations for the water level assuming385

that the perturbations at the open boundary have a stdv of 0.3 m. For the case

with uncorrelated perturbations shown in Fig. 10 a one can see that strong

impacts can only be found in the direct vicinity of the open boundary. There

are some far field effects seen along the English east coast, but with less than

30% stdv of the original perturbations these are relatively weak. Fig. 10 b390

shows the other extreme case of fully correlated perturbations with 0.3 m stdv.

In this case we see a much stronger impact both in the vicinity of the open

boundary and at the English east coast. The introduced variations along the

English coast are about as big as the original perturbation at the German Bight

boundary.395

The qualitative structure of the responses found for the North Sea system are

not surprising, because in the case of correlated noise a much more coherent and

focused signal is introduced, which can be expected to have a larger impact than
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uncorrelated noise, which diffuses much quicker. Correlated perturbations are

more effective in generating large scale M2 eigenmodes of the North Sea system.400

However, the large magnitude of the response found at the English coast deserves

some further analysis. The key point to take into account here is that the

introduced perturbations cannot propagate freely, because the original forcing

for the open boundaries in the English Channel, in the north, and towards the

Baltic Sea are still used for the North Sea model. This means that the estimated405

responses have to compensate the introduced perturbations in such a way that

the water elevations remain the same at these boundaries.

6.2. Experiments with radiation condition at the North Sea open boundary

To get a better a picture how the perturbations along the German Bight

open boundary propagate freely inside the North Sea another experiment was

performed using radiation boundary conditions for the remaining boundaries.

The radiation boundary condition for a wave leaving the domain in positive x

direction reads
∂ζ

∂t
= −

√

g h
∂ζ

∂x
(40)

with water depth h and gravitational acceleration g. Using the spectral repre-

sentation eqs. 11 this can be expressed as

−iωζ̂ = −
√

g h
∂ζ̂

∂x
, (41)

which can be easily integrated into the linear system eq. 15.

Fig. 10 c shows the respective water level stdv resulting from fully corre-410

lated perturbations along the German Bight open boundary with 0.3 m stdv.

Comparing this result to Fig. 10 b shows that the far field effect at the English

coast, while still being significant, is strongly reduced in this case. The near field

impact radius, on the other hand, is slightly extended in the westerly direction.

There is one immediate lesson to be learned from this result. Running an415

assimilation system for the North Sea with observations in the German Bight

one has two basic options for the treatment of the open boundary forcing for

the North Sea model in the English Channel and at the northern boundary.
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• One can assume that the open boundary forcing along these boundaries

is correct in the free run and thus keep them unchanged.420

• One can let the correction signal being applied by the analysis scheme in

the German Bight radiate out of the North Sea area, which will then

change the state estimates also along the western and northern open

boundaries.

As shown above the first approach will lead to somehow artificial compensation425

signals inside the North Sea. The second approach will of coarse lead to incon-

sistencies between the North Atlantic model and the North Sea model, unless

an upscaling approach is also taken for these models. One approach, where the

North Sea open boundary forcing is adjusted using an ensemble method, is de-

scribed in Barth et al. (2010). Depending on the application one has to choose,430

which approach to take.

7. Linear solution for a nested setup

Here, we consider a two way coupled North Sea / German Bight model. The

North Sea model is run on the same grid as in the previous experiments (see

Fig. 2 a). For the German Bight a finer grid with 1 km resolution is used (see435

Fig. 2 b).

As done before, the German Bight area is removed from the coarse North Sea

model, and an additional open boundary is introduced along the German Bight

boundary. We then have to solve the linear system eq. 15 for both domains,

i.e., we have two systems of the form440

Ans xns = bns (42)

Agb xgb = bgb , (43)

where the indices “ns” and “gb” stand for North Sea and German Bight respec-

tively. The right hand side vectors are split into

bns =





b̂ns

b̃ns



 and bgb =





b̂gb

b̃gb



 , (44)
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where b̂ns, b̂gb correspond to the clamped boundary forcing points along the

German Bight and b̃ns, b̃gb are the remaining components of the right hand

side vectors. To obtain this form the equations in the linear systems eqs. 42,43

may have to be reordered accordingly. The right hand sides b̂ns and b̂gb are

connected via

T̂η b̂ns = b̂gb , (45)

where the linear operator T̂η translates the coarse clamped boundary forcing

of the North Sea model to the fine resolution boundary forcing of the German

Bight model using linear interpolation. For a given boundary forcing along the

German Bight boundary the solutions can then be written as

xns = Â−1

ns b̂ns + Ã−1

ns b̃ns (46)

xgb = Â−1

gb T̂ηb̂ns + Ã−1

gb b̃gb . (47)

Here, the matrices Â−1

ns , Â
−1

gb , Ã
−1

ns , Ã
−1

gb contain columns of the matricesA−1

ns , A
−1

gb445

associated with the German Bight open boundary points and the remaining

points, respectively, i.e.,

A−1

ns =
(

Â−1

ns , Ã
−1

ns

)

(48)

A−1

gb =
(

Â−1

gb , Ã
−1

gb

)

. (49)

In order to be consistent, not only the elevations, but also the transports across

the German Bight boundary have to match. In general, for some given clamped

forcing at the German Bight boundary the German Bight model and the North450

Sea model will respond with different currents at this boundary. The idea

is to choose the clamped forcing such that the resulting transports are the

same for both domains. For the linear model this constraint leads to a simple

linear system of equations as explained in the following. Let us denote by Tns

the operator which extracts the transports across the open boundary from the455

North Sea model state vector xns and by Tgb the operator, which extracts the

transports across the open boundary from the German model state vector xgb.

The operator Tgb furthermore translates the fine GB grid to the coarser NS grid
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by averaging. We then require

TnsÂ
−1

ns b̂ns + TnsÃ
−1

ns b̃ns = TgbÂ
−1

gb T̂ηb̂ns + TgbÃ
−1

gb b̃gb (50)

and hence, we get the following linear system of equations to be solved for the460

boundary forcing in the coarse grid model b̂ns:

(TnsÂ
−1

ns − TgbÂ
−1

gb T̂η) b̂ns = TgbÃ
−1

gb b̃gb − TnsÃ
−1

ns b̃ns (51)

The forcing for the German Bight model then follows from eq. 45. The solution

of the system eq. 51 ensures that both the elevation and the currents match

along the boundary between both model domains. The dimension of the system

is equal to the relatively small number of boundary points and hence, standard465

solvers for general complex matrices can be used. The real computational effort

lies in the formation of the matrix in brackets and the right hand side.

Fig. 11 a and b show the M2 amplitudes and phases for the nested model

setup. The amplitude and phase differences with respect to the previous model

run with coarse German Bight bathymetry (see Fig. 3) are presented in Fig. 11470

c and d. As one can see, the higher resolution in the German Bight area leads to

amplitude changes up to 10 cm not only inside this region, but there are also far

field effects visible along the English east coast. The impact on the M2 phase

is concentrated in the high resolution grid area and around the amphidromic

points with phase differences up to 20 deg, which corresponds to 40 min time475

lag.

8. Kalman analysis using observations

In this section we will study the impact of observations acquired in a coastal

area on the regional scale making different assumptions about the type of model

error. These kind of studies are usually referred to in literature as Observing480

System Experiments (OSE’s) and Observing System Simulation Experiments

(OSSE’s) (Le Hénaff et al., 2009; Schulz-Stellenfleth and Stanev, 2010; Sakov

and Oke, 2008).
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Following the standard statistical approach, we assume that the model errors

follow a zero mean Gaussian distribution with covariance matrix P . Further-

more, the observation vector yobs and the state vector x are connected via

yobs = Hx+ ǫ , (52)

where H is the observation operator and ǫ is a zero mean Gaussian process with

covariance matrix G. For a given measurement vector yobs and a first guess

state xf the analysed state vector xa can then be computed according to the

following Kalman equation

xa = xf +K (yobs −Hxf ) (53)

with the Kalman gain matrix

K = P HT (HPHT +G)−1 . (54)

The covariance matrix of the analysed state then follows as (e.g. Evensen (2006))

Pa = P − PHT (HPHT +G)−1HP . (55)

In the standard formulation these equations refer to real valued vectors. For

the application of the Kalman analysis we therefore switch from the complex485

notation used in the previous chapters to real values, i.e., we define a new state

vector x̃ and a new observation vector ỹ as

x̃ =
(

Re(x), Im(x)
)

(56)

ỹ =
(

Re(yobs), Im(yobs)
)

, (57)

where Re and Im denote the real and imaginary part of complex numbers. The

augmented observation operator matrix H̃ of dimension 2n × 2nobs is given

accordingly as

H̃ =





H 0

0 H



 , (58)

where we have used that only real valued observation operators are considered

in this study.
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The covariance matrix of the real state vector then reads

Px̃ =
1

2





Re(Px + P ξ
x ) Im(−Px + P ξ

x )

Im(Px + P ξ
x ) Re(Px − P ξ

x )



 , (59)

where we used the definitions490

Px = 〈xxH〉 (60)

P ξ
x = 〈xxT 〉 (61)

with the complex covariance function Px, the pseudo-covariance function P ξ
x

(Goh and Mandic, 2007), and the superscript T indicating matrix transpose.

For the perturbations of the right hand side vector b discussed in the previous

sections one obtains

Px = Â 〈bbH〉ÂH (62)

P ξ
x = Â 〈bbT 〉ÂT , (63)

where we have used the definition Â = A−1 to simplify the notation. The real495

covariance matrix Px̃ in eq. 59 can then be readily computed.

Because of the large dimension, the computations were done on a linux

cluster using the MPI library. Again, we avoided the storage of the complete

matrix A−1. In a first step the matrix HA−1 was computed. The required

columns of A−1 were obtained on the fly from the LU decomposition of A

similar to the approach described in the last section. Subsequently, the matrix

HPx̃ can be computed as

H̃Px̃ =
1

2





Re
(

HÂQ(ÂH + ÂT )
)

−Im
(

HÂQ(ÂH + ÂT )
)

Im
(

HÂQ(ÂH + ÂT ))
)

Re
(

HÂQ(ÂH − ÂT )
)



 , (64)

where we have again used that H is a real valued operator. Having the matrix

HP available, the expression for the posterior covariance matrix defined in eq.

55 was evaluated step by step, starting with the matrix in brackets.

In the following an experiment is described, in which the impact of a single500

tide gauge measurement in the German Bight is analysed considering different
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types of model errors. Fig. 12 shows relative standard deviations of the analy-

sis in percent with respect to the background standard deviations given by the

matrix P . In this case water level measurements are assumed to be taken at a

single location in the German Bight (8.0◦E 54.0◦N) with 0.01 m accuracy. Fig.505

12 a refers to the situation where the model errors are caused by white noise

at the open boundaries of the North Sea grid, whereas b) represents the case

where the error sources at the boundary are fully correlated. In both cases the

errors are assumed to have a stdv of 0.5 m. One can see that the error reduction

achieved by using the observations is quite restricted to the German Bight area510

for the case of uncorrelated forcing errors. This is not surprising, because the

spatial error patterns inside the North Sea caused by the uncorrelated boundary

forcing errors can be expected to have a short correlation length and thus the

information from measurements can not spread very far. For the case with fully

correlated errors shown in Fig. 12 b one can see that observations taken at a sin-515

gle location can make a big difference. In this situation only the state estimates

inside the English Channel are not significantly improved by the observations.

9. Summary and Conclusions

In this study the impact of different types of small scale perturbations on

larger scales was investigated for the two-dimensional barotropic dynamics of the520

North Sea. The investigation was motivated by recent developments concerning

the availability of operational regional models and observations from coastal

observatories.

A linear model was used for the analysis, which allowed a rigorous statisti-

cal analysis without the need of Monte Carlo simulations. The Navier Stokes525

equations were solved in the spectral domain and it was demonstrated that the

main dynamical features of the fully nonlinear 3D model, which was used to pro-

vide forcing data at the open boundaries, are well captured by this approach.

A North Sea grid with 5 km resolution and a German Bight grid with 1km

resolution was used for the analysis.530
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In the first experiment white noise was added to the bathymetry and the

bottom roughness in the entire North Sea. It was found that the German

Bight stands out with the highest sensitivity to bathymetry uncertainties. This

can be attributed to the small water depth in that area. The uncertainties of

bottom roughness were shown to have strong impacts in the English Channel535

and along the south east coast of England. The Wadden Sea areas between the

barrier islands and the mainland in the German Bight were strongly affected by

roughness perturbations as well. This is again due to the very shallow water in

that area. The high sensitivity in the English Channel is associated with strong

currents in the region. In another experiment the perturbations were restricted540

to grid points with less than 10 km distance to land. It was shown that these near

land points are the most critical ones with regard to bathymetry uncertainties.

For bottom roughness perturbations areas further offshore are of importance

as well. Noise was then added to the diurnal and semidiurnal components

of the wind forcing. It was shown that in case of white noise the impact is545

restricted to the very shallow areas in particular along the barrier islands. For

fully correlated wind perturbations large scale impacts can be found, which are

significantly different for the M2 and S1 frequency components.

In the second set of experiments a new open boundary was introduced along

the German Bight boundary. Perturbations were then applied to the respective550

forcing. The motivation for this approach was to study potential impacts of per-

turbations inside the German Bight area on the North Sea. These perturbations

could, for example, originate from a coastal data assimilation system or from

modifications of model parameters inside the coastal area. It was shown that

the impact strongly depends on the correlation properties of the perturbations.555

In case of strong correlations a significant far field effect was found leading to a

stronger impact along the east coast of England. It was furthermore shown that

this far field effect is very dependent on the type of boundary condition used

for the North Sea model. Introducing a radiation boundary condition along

the English Channel, the northern boundary and the Skagerrak leads to a sig-560

nificant reduction of the far field effect. In this case the perturbations created
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along the German Bight boundary can radiate out of the North Sea domain and

are not reflected back, as in the previous experiment with clamped boundary

conditions.

In a second step, a German Bight grid with 1 km resolution was nested565

into the North Sea grid. An approach was presented to solve the linear Navier

Stokes equations in a two-way coupled setup using a spectral approach. Results

obtained with the nested configuration and the original 5 km setup were com-

pared in terms of M2 phases and amplitudes. Amplitude differences of up to

10 cm and phase differences of up to 20 deg were observed. The impact on M2570

amplitudes was not restricted to the German Bight, but a significant far field

effect could be observed along the English east coast.

Finally, the impact of water level measurements taken in the German Bight

was analysed based on different assumptions about the type of model errors.

For this purpose the Kalman analysis equation was evaluated using different575

formulations for the model error covariance matrix. It was shown that the

observations are most effective in case of correlated errors of the open boundary

forcing. In this case the information gathered by the observation instruments is

spread far beyond the boundaries of the German Bight. If the model errors are

spatially uncorrelated the influence radius of measurements taken at a single580

location is smaller, but can still cover the entire German Bight.

It was pointed out at the beginning that the definition of upscaling is not

straightforward and different research groups seem to use the term in quite

different contexts. In this study we have used the terminology analysing the

interplay of coastal and regional scales. Different aspects like model nesting,585

small scale perturbations, or impact of coastal observations were investigated.

The study has shown that the coupling of coastal and regional models using

downscaling approaches is not sufficient in the long run. This point is of par-

ticular concern when observations are assimilated into nested model systems.

One-way downscaling techniques are traditionally used because of their ease590

of implementation. However, the sophistication of ocean models has reached a

level where upscaling mechanisms cannot be neglected any more. For example, a
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lot work has been done on the integration of coupling mechanisms between cur-

rents, ocean waves, and atmosphere into models. These mechanisms lead to an

energy and momentum transfer between different spatial scales and inappropri-595

ate nesting techniques can lead to significant artifacts. It is furthermore obvious

that cross-border advection processes cannot be treated optimally in a one-way

nested setup. Also, there is a growing amount of high resolution information

available on the coastal scale, e.g., from coastal observations or hydrological

models, which cannot be fed into a regional model directly, because essential600

processes are not resolved. The most obvious way to make best use of such data

is the implementation of upscaling techniques. In general, there is growing de-

mand for ocean information, which is dynamically consistent on different scales.

This is an important issue for both climate studies and operational forecast

systems. More work has to be done on the development of efficient and flexible605

two-way nesting techniques as well as suitable data assimilation methods. It

can be foreseen that with the growing number of coastal observatories and the

growing sophistication of multi-scale modelling approaches the upscaling issue

will be of increasing importance in the future.
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10. Glossary610

The following list contains the main symbols used in the text together with

their physical units:

au, av : amplitudes of zonal and meridional current components [ms−1]
A : Jacobian matrix of the linear spectral tide model
b : Right hand side of linear model equation
E : Energy density [kg s−2]
ǫ : observation error vector

ǫdiss : Energy dissipation [kg s−3] (65)
f : Coriolis parameter [s−1]

ϕu, ϕv : phases of zonal and meridional current components [rad]
Φx,Φy : energy fluxes in zonal and meridional direction [kg ms−3]

g : gravitational acceleration [ms−2]
G : observation error covariance matrix
h : water depth [m]
H : observation operator matrix
K : Kalman gain matrix
i : imaginary unit

In : identity matrix of dimension n
ω : angular frequency [rad s−1]

λw : wind drag coefficient
n : model state vector dimension

nob : number of points along German Bight open boundary
nint : number of interior grid points
On : matrix of dimension n× n filled with ones
P : model error covariance matrix
Q : covariance matrix of perturbation vector
r : bottom friction coefficient
r1 : scaled bottom friction coefficient [ms−1]
ρ : density of sea water [kg m−3]

σh : standard deviation of bathymetry perturbation [m]
σob : standard deviation of open boundary forcing perturbation
σr : standard deviation of bottom roughness perturbation [ms−1]
t : time [s]

τxbott, τ
y
bott : bottom friction terms for zonal and meridional component [m2s−2]

U, V : zonal and meridional transport components [m2/s]
û, v̂ : complex Fourier coefficient for zonal and meridional transport [m2/s]

Û10, V̂10 : complex Fourier coefficients for zonal and meridional 10 m wind [m/s]
x, y : zonal and meridional coordinates [m]
x : model state vector

yobs : observation vector
ζ : water elevation [m]
ζ̂ : complex Fourier coefficient for water elevation [m]
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Figure 1: a) Map of the European North West Shelf area. The dashed line is the 200 m

isobath. The two rectangles indicate numerical model domains used in the study. b) Zoom

into North Sea with some geographical locations mentioned in the text.
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Figure 2: Bathymetry for the North Sea with 5 km resolution (a) and the German Bight with

1 km resolution (b).
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Figure 3: Comparison of M2 amplitudes (a,b) and phases (c,d) for the operational BSH model

(a,c) and the linear spectral model (b,d).
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Figure 4: M2 energy density a) and energy dissipation b)
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Figure 5: M2 amplitude of zonal (a) and meridional (b) current speeds.
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Figure 7: (a) Standard deviation of water elevation resulting from white noise perturbations

of the bathymetry assuming 1 m stdv. (b) Stdv of elevation resulting from white noise

perturbations of the bottom friction coefficient r with 50% stdv. (c,d) The same as b), but

for the zonal c) and meridional d) current component.
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Figure 8: (a) Standard deviation of water elevation resulting from white noise perturbations

of the bathymetry with 1 m stdv within 10 km from land. (b) The same as a), but for white

noise perturbations of the friction coefficient r with 50% stdv.
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Figure 9: (a) Standard deviation of elevation resulting from wind perturbations with M2

periodicity assuming perfect spatial correlation for the u and v component. The correlation

between both wind components is assumed to be zero. (b) The same as (a), but assuming

complete spatial decorelation of wind perturbations. (c,d) The same as (a,b) but for daily

cycle S1.
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Figure 10: Standard deviation of elevation resulting from white noise perturbations (a) and

fully correlation perturbations (b) with stdv 0.3 m along the German Bight border. c): The

same as (b), but using radiation boundary conditions for the remaining open boundaries of

the North Sea model.
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a) b)

c) d)

Figure 11: (a,b): M2 elevation amplitude (a) and phase (b) of the nested setup. (c,d):

Difference of the M2 elevation amplitude (c) and phase (d) of the coarse setup and the nested

setup.
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Figure 12: Normalised analysis error of the M2 water level resulting from a single tide gauge

measurement in the German Bight (8.0◦E 54.0◦N) with 0.01 m accuracy. The source of the

model error is assumed to be white noise a) and fully correlated noise b) added to the water

level at the open boundaries of the North Sea model with 0.5 m stdv.
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