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Abstract

This study develops a dynamic multi-objective programming (DMOP) approach to handle problems of optimization under conditions of uncertainty typified by multiple goals and dynamic subsystems. The proposed approach

seamlessly integrates multi-objective programming, fuzzy set theory, and system dynamics tools to conduct optimal land use planning in dynamic and complex environmental systems. Based on the DMOP approach, this study

constructs an interactive dynamic multi-objective programming model, investigates the connection between land use and future urban development, and incorporates the preferences of decision makers using a compromise index.

A case study from Taiwan shows that the proposed modeling framework can accommodate more complete information, allowing improvements to be made in strategic planning for land use.

Keywords: Land use pplanning; Multi-objective programming; Fuzzy set theory; System dynamics

Introduction

Land use planning requires the consideration of multiple objectives, including environmental, ecological, economic, social, and other factors. Climate change, rapid economic development, changing social needs, and land use

diversity have led to rapid changes in land use patterns and space requirements. Objective trade-offs are inevitable in appropriately allocating land resources, and stakeholders’ participation in the planning process is important. Traditional

multi-objective programming (MOP) effectively solves the issues of objective trade-offs and the preferences of decision makers in land use planning. For example, previous land resource planning studies, including those of GGibert et al.

(1985), Diamond and Wright (1989), Chang et al. (1995), Seppelt and Voinov (2003), and Stewart et al. (2004), used mathematical programming to analyze the connection between objectives and find the optimal solution based on the given

conditions as well as decision makers’ requirements. However, without conducting simulations, decision makers cannot evaluate the dynamic effects of their plans, which is important in the land use planning process because zoning

decisions are neither entirely reversible nor cheap to adjust yearly. Meanwhile, if model parameters are not adjusted based on environmental changes, the system may generate an inappropriate solution that does not maximize the value of

the land usage. The traditional system dynamics (SD) approach, which analyzes system structure and developmental patterns based on system simulations, is gradually being implemented in urban development studies, such as those of

Costanza et al. (1990), Francisco et al. (1993), Matthias and Frederick (1994), de Kok and Wind (1996), Gulen and Lale (1996), Cavallaro and Ciraolo (2002), Elrefaie and Herrmann (2003), Chen et al. (2005), Bald et al. (2006), and Chang et

al. (2008). However, decision makers can usually only select from among a predefined set of scenarios that have been developed either based on the experience of the system builder or through trial and error. In addition, high-leverage

solutions, which represent small, well-focused actions in the right place, can produce significant, enduring improvements in a system dynamics model (Senge, 1990). However, these may not be optimal solutions. Although both types of

traditional tools have some drawbacks, a hybrid optimization/simulation model maximizes the advantages of both approaches and avoids their deficiencies. Compared to the MOP model, the proposed dynamic multi-objective programming

(DMOP) approach provides optimal solutions that incorporate the development of the urban system over time. This modeling approach also improves the efficiency of policy analysis and design for the SD model.

In this paper, we address the shortcomings of traditional urban planning methods, including optimization and simulation. To satisfy the requirements for decision-makers in urban spatial planning, we propose a new approach that

handles problems of optimization under conditions of uncertainty. The proposed DMOP approach is capable of dealing with the increased complexity of spatial planning for dynamic urban environments and provides decision support tools for

participants. Specifically, an interactive dynamic multi-objective programming (IDMOP) model is developed to derive compromised land use scenarios that balance the conflicting objectives of various stakeholders while reflecting the dynamic



changes in the system produced by spatial planning solutions. The case study from the Cijin Island in Taiwan is also included to illustrate the implementation of the dynamic-optimized methodology in a general way. The remainder of this

paper is organized as follows. SMethodology section describes the methodology and the evolution of the new approach to decision support for dynamic optimization problems. The verification of the approach and an empirical case study are

discussed in Smodel application and land use scenarios analysis section. Finally, results section describes the implications of this case study and is followed by overall conclusions in Sconclusions section.

Methodology
Dynamic multi-objective programming approach

Strategic assessment refers to proposed planning performed to achieve a future development. The projected system states of the planning period form the initial basis for the model parameters of the assessment methods. In dynamic systems,

however, a strategic plan changes system states. These variations influence the assessment model parameters, which, in turn, generate different strategic plans. Therefore, it is only when system states and model parameters reach stability in a dynamic

environment that an optimal strategic assessment can be obtained. FigF. 1 illustrates this dynamic strategic assessment process.

At a fixed time point, traditional optimization problems with multiple objectives derive optimal plans for multi-objective decision making and problem evaluation. In real life, however, many optimization problems are connected to time factors. Objective

functions are influenced by dynamic changes within the system. As a result, the optimal solution changes dynamically with time. Such problems are called dynamic optimization problems (DOPs). DOPs include both dynamic single-objective and multi-

Fig. 1 Optimal dynamic strategic assessment process.



functions are influenced by dynamic changes within the system. As a result, the optimal solution changes dynamically with time. Such problems are called dynamic optimization problems (DOPs). DOPs include both dynamic single-objective and multi-

objective optimization problems. The key to solving DOPs is the automatic updating of objective functions, constraints, and related parameters in the search for an optimal solution based on environmental changes.

Many parameters in an objective function are dynamically uncertain in real life. Variability is intricately connected to time and previous solutions adopted by decision makers. In other words, the choice of different plans at an earlier stage changes the

factors within the system over time, which inevitably influences the model parameters. When model parameters change over time, the optimal solution derived from past parameters may no longer be the optimal solution and a new optimal solution must be

generated using parameters that have been adjusted to reflect such changes.

The DMOP approach is a hybrid optimization/simulation approach and addresses dynamic multi-objective optimization problems, which are dynamically uncertain by nature, by formulating an integrated modeling framework that consists of the

system dynamics model (SD model) and the multi-objective programming model (MOP model). The land use planning MOP model was formulated according to the principle of sustainability, which strives to balance the issues of environmental protection,

economic development, and social justice. The SD model simulates dynamic changes in urban development by synthesizing the interaction of key factors, such as population variation, environmental pollution, economic development, transportation, and the

government's financial position.

The proposed land use MOP model can derive several non-inferior solution sets for the system dynamic model. Based on the derived land use scenario, the SD model for urban development was used to simulate the interaction between critical

factors in the urban system (e.g., land use area, population, number of industries). The results of the SD simulation provide insight into the effectiveness and drawbacks of the designated land use planning from the MOP model. At the end of the SD simulation,

the predicted values of the system state variables are derived by simulating dynamic changes in the environment. After converting the simulated system state variables into the dynamic parameters, which are used to modify the corresponding parameters in

the MOP model, updated non-inferior solutions are derived. Among the set of updated solutions, the solution with the shortest Euclidean distance from the previous scenario is selected as an approximate solution. The SD model based on the new decision

variables is applied again to acquire revised system state variables. In comparing the revised system state variables with the previous set, if the variations in the simulated system state variables are acceptable to decision makers, the most appropriate

solutions in this dynamic environment can be obtained. The integration of SD and MOP models in the proposed DMOP framework articulates the connections between static land use planning and dynamic urban development. As a result, the DMOP approach

achieves the optimal urban land use planning strategy for a dynamic environment. FigF. 2 shows a schematic diagram of the DMOP framework and describes the process of finding an optimal solution.

Interactive Ddynamic multi-objective programming model

To establish an interactive channel between analysts and decision makers, the IDMOP model integrates the two using an interactive computer-aided system, which allows decision makers to input their preferences as well as receive simulation

results. A unique feature of the IDMOP model is that it does not generate multi-objective solutions from the viewpoint of the analyst. Instead, the IDMOP model incorporates fuzzy set theory and compromise indices to establish a multi-objective compromise

model that enables decision makers to choose a deterministic scenario based on desirable trade-offs between multiple objectives.

FigF. 3 illustrates the operational flow of the IDMOP model for land use planning. In each period, the SD model takes the output (decision variables) of the MOP model as its parameters, and the output (dynamic parameters) from the SD simulation are

used to modify the MOP model. This process incorporates decision makers’ preferences by allowing decision makers to assign a compromise index α′ to find a compromise policy for land use that satisfies their preferences for each objective. Once the IDMOP

FigF. 2 Schematic diagram of dynamic multi-objective programming (DMOP) approach.



model in one period is terminated, an optimal land use strategy based on the decision makers’ preferences can therefore be obtained and the simulated results of the optimal solution can be used as the initial conditions for the upcoming period. The number

of periods required for long-term planning depends on the characteristics of the planning scheme. The interactive system can therefore apply to either short-term or long-term land use planning when considering multiple objectives and the dynamic nature of

the system.

Formulation of land use MOP model

To achieve the goal of sustainable urban development, a city planner should strike a balance among the key factors of sustainable development and conduct reasonable and effective urban planning through scientific methods. The four objective

functions of the proposed land use MOP model are to maximize economic development, minimize environmental pollution, maximize employment opportunities, and minimize carbon dioxide (CO2) emissions..

(1) Maximizing economic development The output values generated through industrial activities are a region's main source of economic development. The land use pattern associated with an industry type and its land use area determine the output values of an industry, and summing up

the output values of a region's land use patterns yields its total industrial output value. Higher levels of total industrial output value indicate better economic development in a region. The objective function is described as

FigF. 3 Operational flow of the interactive dynamic multi-objective programming (IDMOP) model.



where Z1 is the total annual output value (TWD/year)), Vj is the annual industrial output value per hectare (TWD/year-ha) for the jth land use pattern pand Xj is the land use area (ha) of the jth land use pattern, j = 1, 2, ......., nn.

(2) Minimizing environmental pollution Maintaining good environmental quality is the primary goal of environmental protection. Pollution in aquatic environments is a good indicator of the integrity of environmental quality. In particular, the BOD5 ((biochemical oxygen demand, five days) is a

water quality index commonly used to assess the pollution levels of organic matter in water. Higher BOD5 indicates more organic matter in an aquatic environment and, therefore, more severe environmental pollution. This study simplifies the scale of the model by designating BOD5 as an

urban environmental pollution indicator. The point and non-point source pollution combined determine a region's total BOD5 pollution output. The objective function is described as

where Z2 is the total BOD5 pollution output (kg/year)), Pj is the annual non-point source BOD5 pollution output per hectare (kg/yyear ha) for the jth land use patternp, Qi is the annual point source BOD5 pollution output (kg/year) for the ith point source, i = 1, 2, ......., m mand Wi is the amount

of the ith point source (e.g., population, companies, and factories), i = 1, 2, ......., mm.

(3) Maximizing employment opportunities Unemployment directly affects the welfare of a family and causes social problems that affect the entire community. Therefore, it is crucial to provide sufficient jobs to sustain welfare and social security. Stronger industrial activities usually bring more

job opportunities to a region. Thus, the land use pattern associated with an industry type and its land use area determine the number of employees. The total number of employees represents the employees of all industries. A higher total number of employees indicate ibetter employment

opportunities. The objective function is described as

where Z3 is the total number of employees (people) )and Oj is the number of employees per hectare (people/ha) for the jth land use patternp.

(4) Minimizing carbon dioxide emissions The heavy use of coal, petroleum, and other fossil fuels in human economic development has significantly increased the greenhouse effect and led to global warming and climate change. For example, a rise in the sea level poses a critical threat to

daily life, economic production, and ecology in coastal zones. Reducing greenhouse gas emissions has become an international goal and an important issue in sustainable urban development. Carbon dioxide is currently the most pervasive greenhouse gas and an important

internationally target for significant reduction. The amount of carbon dioxide emissions is decided by a land use pattern and its land use area. The objective function is described as

where Z4 is the total CO2 emissions ((10,000 tons) and Ej is the CO2 emissions per hectare ((10,000 tons/ha) for the jth land use patternp.

The other part of MOP modeling formulates a constraint set to fulfill certain basic requirements. In real life situations, urban land use planning must conform to relevant regulations and consider practical restrictions. For simplicity, the MOP model in

this study only considers two restrictions: the total area of the urban region, and various limitations in terms of land use patterns.

(1) .Total area of the urban region The summation of the areas for all land use patterns in the study region should be equal to the total urban area:

where TT is the total urban area (ha)).

(2) Upper and lower bounds on the areas of the various land use patterns Upper and lower bounds on the areas of the various land use patterns were stipulated based on urban development needs and related land use regulations.



where LUj is the upper bound on the area (ha) for the jth land use pattern, j = 1, 2, ......., n nand Lj is the lower bound on the area (ha) for the jth land use pattern, j = 1, 2, ......., nn.

Following Wu and Guu (2001), this study adopts the following procedures to accommodate the compromise indices in the MOP model. The transformation of the multiple objective functions into compromise indices involves fuzzy set theory and

decision makers’ preferences can be easily adjusted using these indices. The following points describe this process (Chiou &and Wu, 2006):

(1) Establish linear membership functions Multi-objective functions encounter conflicts and do not use standardized measurement units. To address this issue, this study employs the membership functions in fuzzy set theory, which need to calculate the possible range [ ,  ] of each

objective function fZi(x) in advance. Using Werners’ (1987) method, the lower bound   Zand the upper bound   of the objective function are obtained as follows:

where A is the coefficient matrix in the constraint set sand b is the right-hand vector in the constraint sets. The objective functions Z2 and Z4 minimize pollutant discharge and CO2 emissions. Therefore, the satisfaction levels of these two objective functions, in terms of fuzzy membership

function, should be expressed as decreasing linear functions. The membership functions of Z2 and Z4 are defined as follows:

The objective functions Z1 and Z3 maximize economic development and employment opportunities. Therefore, the satisfaction levels of these two objective functions, in terms of fuzzy membership function, should be expressed as increasing linear functions. The membership functions of Z1

and Z3 are defined as follows:

(2) (Using the min operator method After deriving the membership functions, the min operator method converts the original MOP model into a single objective linear programming model, as Program (1) shows..

Solving Model (1) derives the optimal solution x* and the optimal objective function value α*. The term α* refers to the maximum least satisfaction level for all objective functions in the original MOP because it simultaneously satisfies all membership functions.

(3) .Using the average operator method If the objective functions are equally important, the original MOP model should be converted into an average operator model, as Program (2) shows..

Model (2) derives the optimal objective function value vα#, which refers to the average satisfaction level of the membership functions.

(4) .Two-phase approach The two-phase approach combines the min operator and the average operator models. The min operator in Program 1 obtains the optimal objective function value α* in the phase I. Phase II model is then formulated, as Program (3) shows, using the average

operator model associated with the α*. The optimal solution acquired by the two-phase approach is fuzzy-efficient (Werners, 1987, 1988). The optimal objective function value   αis certainly not less than the satisfaction level lα*.

(1)

(2)



(5) Multi-objective programming compromise model The multi-objective programming compromise model is similar to the two-phase approach, as Program (4) shows, except that decision makers can assign their own satisfaction preference pα′.

The value of α′ ranges between α*, which was derived through the min operator, and the minimum membership function fµi, which was derived through the average operator. Decision makers can adjust the value of α′ within the designated range to obtain the corresponding compromise

solution.

Urban development system dynamic model

The system dynamic model for urban development proposed in this study simulates the interaction between urban development and land use planning. There are five major aspects in the system: population, economy, environment, government

finance, and transportation in an urban region. FigF. 4 shows a schematic diagram of the causal relationships between the key factors, including five positive feedback loops and three negative feedback loops.

(3)

(4)



A dynamic system generally comprises several positive and negative feedback loop structures whose interactions have a profound effect on the system's behavior. A positive feedback loop represents a self-reinforced process over time if one ends up

with the same result as the initial assumption after going around the loop. For example, one of the positive feedback loops in Fig. 4 involves the factors of urban attractiveness, population, government's financial position, investment on public transportation,

accessibility, and then back to urban attractiveness. As urban attractiveness increases, the population in a city can be expected to increase. An increase in population leads to higher tax income for the public sector, and thus improves the government's

financial position. With better a financial situation, the government can make greater investments in infrastructure, such as public transportation, and higher accessibility can be expected in the future. As a result of better accessibility, urban attractiveness

increases accordingly. On the contrary, a negative feedback loop depicts a self-regulating process if the result contradicts the initial assumption. For instance, a negative feedback loop in Fig. 4 involves the factors of urban attractiveness, population, pollution,

and environmental quality. When higher urban attractiveness brings increases the population of the city, the pollution discharges inevitably increase, degrading environmental quality. Eventually, the inferior environment will decrease urban attractiveness.

Whereas the SD model has been constructed, model validation is a prerequisite step before modeling real systems. The model validation process uses historic data to test the degree of authenticity of the model-generated behavior to the original

behavior of the real system. After model validation, the dynamic simulation results could be used as parameters in the MOP model.

Modeling software

The next step, after formulating both MOP and SD models, is to implement the models using the designated software and integrate the software based on the proposed IDMOP framework. The MOP model in this study employs GAMS® optimization

software to derive the solution of the model. GAMS® was developed by Brook et al. (1992), and stands for General Algebraic Modeling System. It incorporates Murtagh and Saunders’ (1983) Mmodular in-core non-linear optimization system (MINOS) algorithm to

process linear and nonlinear planning problems and is an advanced modeling system that performs mathematical programming. GAMS® allows users to modularize problems using simple tools, solve complex problems in the shortest time possible, and

present the results as Microsoft Excel® or text file outputs.

The simulation of the SD model was performed using Stella® system dynamics software. Stella® is a systems thinking software developed by ISEE Systems that is designed for modeling the dynamics of highly interdependent systems. This software

has a friendly graphical interface that aids in constructing, laying out, and using a model to provide a practical approach, to dynamically visualize and communicate how sophisticated systems really work. The simulation results of the complex system can be

expressed in the form of figures, tables, and numerical readouts. The input/output of Stella® can also be connected to Microsoft Excel®, which enhances convenience for linking with other software.

Model Aapplication and land use scenarios analysis

Using the MOP model and the SD model developed in the previous section, this study applies the IDMOP model to investigate land use planning in the Cijin District of Kaohsiung, Taiwan. The Cijin District is located on a slender

island on the western side of Kaohsiung that serves as a natural breakwater for the Kaohsiung Harbor (Fig. 5). With an area of 1.46 1km2, Cijin has five fishing harbors and had nearly 30,000 residents in 2010. The current spatial plan includes

five land use types, including residential areas (48.64 ha), industrial areas (13.11 ha), commercial areas (6.64 ha), public areas (113.09 ha), and reserve areas (0.65 ha). Cijin is a traditional fishing village community, and most of its residents

are employed by the maritime industry. However, the Kaohsiung City Government is planning to transform Cijin into a sustainable island. This case study is expected to provide useful decision support for policymakers. There are three

planning periods in the whole project starting from 2011, and each period spans five years. According to Taiwanese law, several restrictions are listed as follows:

FigF. 4 Schematic causal loop diagram of the urban development SD model.



where X1 is residential area, X2 industrial area, X3 commercial area, X4 public area, X5 reserve area, L1 lower bound of required residential area, which is based on the regulationsr, L2 lower bound of industrial area, which is based on the

real use situations, L3 lower bound of commercial area, which is based on the real use situations, L4 lower bound of public area, which is based on the real use situations, L5 lower bound of reserve area, which is based on the real use

situations, U3 upper bound of commercial area, which is based on regulationsr, W1 total population, D population density, which is regulated by the local governmentg, A3 commercial area for people, which is regulated by lawl, and A4 is public

area for people, which is regulated by the local governmentg.

Population dynamics is the core element of land use planning and sufficiently serves the purpose of behavioral validation. Population statistics from the Cijin District between 1996 and 2010 were used to evaluate the historical fit of

the SD model. Starting SD simulation in 1996 provided fifteen years of simulated-data to compare to the actual behavior of the population of the Cijin District. As indicated by FigF. 6, the results of the simulation show a similar trend of real

experience in the Cijin District regarding population dynamics.

FigF. 5 Geographic location of Cijin District.

FigF. 6 Behavior validation of the SD model.



Table 1 shows the initial set of non-inferior solutions in the first planning period ((2011–2015) obtained through the compromise modeling. By adjusting the compromise index α′, which ranges from 0.46 to 0.5, decision makers can

acquire the corresponding compromise solution. The corresponding objective function values and satisfaction levels of the compromise solutions can be seen in Table 2. The “Current Plan” reveals the land use scheme adopted by the public

sector. Table 2 shows that the total satisfaction level of the current land use plan in the Cijin District is less than that of the compromise solutions. Meanwhile, compromise modeling allows decision makers to select their favorite plans from

the non-inferior solutions. The decision preference can be based on the satisfaction level of one single objective or the composite satisfaction level of various objectives. For example, if decision makers are looking for better economic

development in Cijin, they should choose the plan with α equal to 0.5 because the objective function value Z1 and the satisfaction level µ1 of this type of plan are the highest. Alternately, they may prefer higher employment opportunity, in

which case the plan with α equal to 0.46 is preferable to others because the objective function value Z3 and the satisfaction level µ3 of this type of plan are the highest. If the overall satisfaction of all objectives are the major concern, then

decision makers should choose the land use plan with α equal to 0.46.

Table 1 Initial Nnon-inferior solutions within the compromise index range in 1st planning period.

Compromise Index Residential area (ha) Industrial area (ha) Commercial area (ha) Public area (ha) Reserve area (ha)

α′ = 0.50 42.86 18.00 8.16 97.63 15.48

α′ = 0.49 41.57 15.94 9.45 97.63 17.53

α′ = 0.48 40.28 13.89 10.74 97.63 19.58

α′ = 0.47 38.99 11.84 12.03 97.63 21.63

α′ = 0.46 37.70 9.79 13.32 97.63 23.69

Table 2 Initial Oobjective function values and satisfaction levels of the compromise solutions and current plan in 1st planning period.

Scenarios Objective function values Satisfaction levels

Z1 (TWD) Z2 (kg/year) Z3 (people) Z4 (tons) µ1 µ2 µ3 µ4 Total

αα 3= 101.25 12,958,664 444,704 4100 651,365 0.500 0.500 0.503 0.504 2.007

α = 0.49 12,756,428 444,706 4242 589,117 0.490 0.490 0.526 0.574 2.080

α = 0.48 12,558,780 444,709 4384 527,171 0.480 0.480 0.550 0.646 2.154

α = 0.47 12,361,132 444,712 4527 465,224 0.470 0.470 0.574 0.713 2.227

α = 0.46 12,163,484 444,715 4669 403,277 0.460 0.460 0.598 0.783 2.300

Current Plan 99,838,389 444,683 3177 513,605 0.342 0.573 0.349 0.659 1.923

Results

Once the initial MOP land use plan is selected, the IDMOP model can proceed to SD simulation. Given the scenario that the maximum industrial output value is preferable (α equal to 0.5), the SD model took the land use plan, which

is the decision variables acquired from the MOP, as its initial conditions and simulated the urban development from 2011 to 2015. The scenario of maximum industrial output value is hereafter called “Plan A.” Table 3 shows the yearly system

state variables obtained by the simulation. To summarize the system state variables during one planning period, which spans five years, this study calculated the average annual system state variables. These average values were then

converted into the MOP model's dynamic parameters, e.g., coefficients of objective functions and constraints, so that the MOP model was modified to generate updated non-inferior solutions. An updated land use scenario was derived by

computing the shortest Euclidean distance between the original vectors and the set of new non-inferior solutions to find the solution with the highest similarity to the original scenario. The updated scenario was applied to the next SD

simulation run. The DMOP process continued several rounds until the variation in the system state variables of SD model were acceptable and the optimal solution was obtained. Table 4 shows that the updated scenario more closely

approximate the previous one while the shortest Euclidean distance of each round (i.e. ,  ) decreased after two rounds of DMOP. Meanwhile, the system state variables reached stable after two rounds of the DMOP process

during the first planning period as shown in Table 5.

FigF. 6 Behavior validation of the SD model.



Table 3 System Sstate variables of Plan A from 2011 to 2015.

System state variables Year

2011 2012 2013 2014 2015

Population 229,992 29,992 29,952 29,872 29,755

Number of industries 864 871 124 888 896

Industrial output value ((thousand TWD) 9,895,125 9,949,927 10,002,142 10,051,085 10,095,9944

Employees 3201 3223 3245 3266 3287

Table 4 Approximation of Lland use scenarios from 2011 to 2015.

Land use scenario (Ri) Non-inferior solutions (Sj) Euclidean distance ( )

R0(42.86, 18, 8.16, 97.63, 15.48) S1(42.89, 18.18, 8.07, 97.52, 15.47)   = 0.231516738

SS2(41.13, 15.2, 9.83, 97.52, 18.46)   = 4.744923603

SS3(39.36, 12.21, 11.6, 97.52, 21.45)   = 9.657157967

SS4(37.6, 9.22, 13.36, 97.52, 24.43)   = 14.55714945

S5(37.5, 8.63, 13.46, 97.52, 5.03)   = 15.35679329

R1(42.89, 18.18, 8.07, 97.52, 15.47) S6(42.91, 18.2, 8.05, 97.51, 15.47)   = 0.032954514

SS7(41.11, 15.12, 9.85, 97.51, 18.54)   = 5.014704976

S8(39.23, 11.91, 11.72, 97.51, 21.75)   = 10.27201859

S9(37.5, 8.91, 13.46, 97.51, 24.76)   = 15.17918463

S10(37.5, 8.45, 13.46, 97.51, 25.21)   = 15.73892963

R2(42.91, 18.2, 8.05, 97.51, 15.47)

Table 5 Stability of Ssystem state variables from 2011 to 2015.

System state variables Rounds of the DMOP

Round 0 Round 1 Round 2

Population 229,913 29,911 29,911

Number of industries 880 880 880

Industrial output value ((thousand TWD) 9,998,855 10,001,200 10,001,353

Employees 3244 3245 3245

As mentioned earlier, there are three planning periods in the whole project. Once the first period DMOP process was finished, the results were transferred to the second planning period as the initial situations. Following the same

procedure, the dynamic optimal land use planning in each period was acquired, as shown in Table 6. The land use scenario, which will be adjusted every five years, can further be simulated in the IDMOP model to provide decision makers



with time series figures of urban development trends between various land use plans. FigF. 7 shows the temporal variations of several variables through the 115-year simulations of urban development under “Current Plan” and “Plan A.”

Because “Plan A” is to pursue the best economic development, the SD simulation shows that “Plan A” would generate larger industrial output and more CO2 emissions than “Current Plan.” The simulations also indicate “Plan A” gradually

increases the industrial and commercial areas at the cost of the public area, which unavoidably diminishes the quality of life and causes some residents to relocate elsewhere. Consequently, the decreasing population retards economic

growth and negatively affects the government's financial position. Urban planning results in a complex and dynamic environment that can be anticipated using the SD simulation. The simulation function provided by the IDMOP model will be a

useful decision support tool for the public sector to finalize the Cijin land use scheme by evaluating the future urban development trends of all alternatives. In addition, the proposed IDMOP model can improve the performance of land use

planning by updating model parameters through dynamic systems. To prove the above, the initial “Plan A” based on traditional MOP modeling with model parameters that are constant throughout the planning periods is simulated and named

“Plan AA′” hereafter. Fig. 8 shows that “Plan A” can yield greater industrial output value than “Plan PA′,” and the difference would increase with time. Therefore, the IDMOP model can locate a better land use plan to achieve the objective of

maximum economic development.

Table 6 Decision variables in the various periods from 2011 to 2025.

Decision variables Periods

1st period 22011–2015 2nd period 2016–2020 3rd period 2021–2025

Residential area (ha) 42.91 40.78 37.78

Industrial area (ha) 18.20 18.56 21.55

Commercial area (ha) 8.05 8.83 8.98

Public area (ha) 97.51 94.93 89.47

Reserve area (ha) 15.47 19.03 24.35

FigF. 7 Comparisons of urban development trends for the land use plans. Note: Plan A A– the scenario generated by the IDMOP model; Current Plan P– the scheme adopted by the public sector.



Conclusions

With increasing competition for various human activities, multi-objective optimal planning of land resources, which helps find balanced solutions to meet economic, environmental and social needs, has become an important and

indispensable part of sustainable urban development. The developed IDMOP model considers the holistic planning and spatial-temporal changes in a dynamic and complex urban environment to improve on the drawbacks of traditional land

use planning methods. The IDMOP model offers an interactive humanh–computer interface so that decision makers can adjust the compromise index to generate scenarios that fit their preferences and gain insight into the potential

development of different scenarios. This study provides a strategic planning tool for land resources management based on the anticipation of future development and decision makers’ preferences. Other spatial allocation techniques (e.g.,

geographic information systems and land suitability analysis) should be combined with the proposed spatial planning model for land use allocation in further research.
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Queries and Answers

Query: Please confirm that given names and surnames have been identified correctly.

Answer: Given names and surnames have been identified correctly. ​​
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